Skip to main content
Log in

Vapor phase epitaxy of PbS single-crystal films on water-soluble substrates and application to photodetectors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lead sulfide (PbS), a typical functional semiconductor material, has attracted serious attention due to its great potential in optoelectronics applications. However, controllable growth of PbS single-crystal film still remains a great challenge. Here, we report heteroepitaxial growth of large-scale highly crystalline PbS films on alkali salt (NaCl and KCl) substrates via chemical vapor deposition (CVD). Structural characterizations demonstrate that the as-grown PbS films exhibit an atomically sharp interface with the underlying substrates. The epitaxial relationships between the epilayers and substrates were determined to be PbS (100)//NaCl (100) or KCl (100), PbS [010]//NaCl [010] or KCl [010]. Owing to the high solubility of alkali salt, the epitaxial PbS films can be rapidly released from the underlying substrates and transferred to other substrates of interest while maintaining good integrity and crystallinity, the process of which is particularly attractive in the fields of electronics and optoelectronics. Furthermore, photodetectors based on the transferred PbS films were fabricated, exhibiting a high photoresponsivity of 7.5 A/W, a detectivity of 1.44 × 1012 Jones, and a rapid response time of approximately 0.25 s. This work sheds light on the batch production, green transfer, and optoelectronic application of PbS films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grayli, S. V.; Zhang, X.; MacNab, F. C.; Kamal, S.; Star, D.; Leach, G. W. Scalable, green fabrication of single-crystal noble metal films and nanostructures for low-loss nanotechnology applications. ACS Nano 2020, 14, 7581–7592.

    Article  CAS  Google Scholar 

  2. Lu, D.; Baek, D. J.; Hong, S. S.; Kourkoutis, L. F.; Hikita, Y.; Hwang, H. Y. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 2016, 15, 1255–1260.

    Article  CAS  Google Scholar 

  3. Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J. Y.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367.

    Article  CAS  Google Scholar 

  4. Xu, Y. J.; Shi, X. Y.; Zhang, Y. S.; Zhang, H. T.; Zhang, Q. L.; Huang, Z. L.; Xu, X. F.; Guo, J.; Zhang, H.; Sun, L. T. et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 2020, 11, 1330.

    Article  CAS  Google Scholar 

  5. Lin, Y. C.; Torsi, R.; Geohegan, D. B.; Robinson, J. A.; Xiao, K. Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci. 2021, 8, 2004249.

    Article  CAS  Google Scholar 

  6. Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater. Sci. 2019, 106, 100573.

    Article  CAS  Google Scholar 

  7. Zheng, L.; Wang, X. W.; Jiang, H. J.; Xu, M. Z.; Huang, W.; Liu, Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3779-z.

  8. Xiao, Y.; Wang, D. Y.; Zhang, Y.; Chen, C. R.; Zhang, S. X.; Wang, K. D.; Wang, G. T.; Pennycook, S. J.; Snyder, G. J.; Wu, H. J. et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS. J. Am. Chem. Soc. 2020, 142, 4051–4060.

    Article  CAS  Google Scholar 

  9. Talapin, D. V.; Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 2005, 310, 86–89.

    Article  CAS  Google Scholar 

  10. Moayed, M. M. R.; Kull, S.; Rieckmann, A.; Beck, P.; Wagstaffe, M.; Noei, H.; Kornowski, A.; Hungria, A. B.; Lesyuk, R.; Stierle, A. et al. Function follows form: From semiconducting to metallic toward superconducting PbS nanowires by faceting the crystal. Adv. Funct. Mater. 2020, 30, 1910503.

    Article  CAS  Google Scholar 

  11. Zhang, X. J.; Wu, X. X.; Liu, X. Y.; Chen, G. Y.; Wang, Y. K.; Bao, J. C.; Xu, X. X.; Liu, X. F.; Zhang, Q.; Yu, K. H. et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis—NIR dual emission. J. Am. Chem. Soc. 2020, 142, 4464–4471.

    Article  CAS  Google Scholar 

  12. Rath, A. K.; Bernechea, M.; Martinez, L.; Konstantatos, G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 2011, 23, 3712–3717.

    Article  CAS  Google Scholar 

  13. Moayed, M. M. R.; Bielewicz, T.; Noei, H.; Stierle, A.; Klinke, C. High-performance n- and p-type field-effect transistors based on hybridly surface-passivated colloidal PbS nanosheets. Adv. Funct. Mater. 2018, 28, 1706815.

    Article  CAS  Google Scholar 

  14. Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013, 135, 5278–5281.

    Article  CAS  Google Scholar 

  15. Xia, Y.; Liu, S. S.; Wang, K.; Yang, X. K.; Lian, L. Y.; Zhang, Z. M.; He, J. G.; Liang, G. J.; Wang, S.; Tan, M. L. et al. Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 2020, 30, 1907379.

    Article  CAS  Google Scholar 

  16. Xu, J. X.; Voznyy, O.; Liu, M. X.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; De Arquer, F. P. G. et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 2018, 13, 456–462.

    Article  CAS  Google Scholar 

  17. Yang, C.; Feng, S. L.; Tang, L. L.; Shen, J.; Wei, X. Z.; Shi, H. F. Electrochemical epitaxial grown PbS nanorods array on graphene film for high-performance photodetector. Adv. Mater. Interfaces 2021, 8, 2001464.

    Article  CAS  Google Scholar 

  18. Ren, Z. W.; Sun, J. K.; Li, H.; Mao, P.; Wei, Y. Z.; Zhong, X. H.; Hu, J. S.; Yang, S. Y.; Wang, J. Z. Bilayer PbS quantum dots for high-performance photodetectors. Adv. Mater. 2017, 29, 1702055.

    Article  CAS  Google Scholar 

  19. Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.

    Article  CAS  Google Scholar 

  20. Wang, Y. J.; Liu, Z. K.; Huo, N. J.; Li, F.; Gu, M. F.; Ling, X. F.; Zhang, Y. N.; Lu, K. Y.; Han, L.; Fang, H. H. et al. Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 2019, 10, 5136.

    Article  CAS  Google Scholar 

  21. Ibáñez, M.; Zamani, R.; Gorsse, S.; Fan, J. D.; Ortega, S.; Cadavid, D.; Morante, J. R.; Arbiol, J.; Cabot, A. Core—shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: Pbte-PbS thermoelectric properties. ACS Nano 2013, 7, 2573–2586.

    Article  CAS  Google Scholar 

  22. Tan, C. L.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.

    Article  CAS  Google Scholar 

  23. Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.

    Article  CAS  Google Scholar 

  24. Popov, G.; Bačić, G.; Mattinen, M.; Manner, T.; Lindström, H.; Seppänen, H.; Suihkonen, S.; Vehkamaki, M.; Kemell, M.; Jalkanen, P. et al. Atomic layer deposition of PbS thin films at low temperatures. Chem. Mater. 2020, 32, 8216–8228.

    Article  CAS  Google Scholar 

  25. Wang, F.; Wang, Z. X.; Shifa, T. A.; Wen, Y.; Wang, F. M.; Zhan, X. Y.; Wang, Q. S.; Xu, K.; Huang, Y.; Yin, L. et al. Two-dimensional non-layered materials: Synthesis, properties and applications. Adv. Funct. Mater. 2017, 27, 1603254.

    Article  CAS  Google Scholar 

  26. Zheng, Z. Q.; Yao, J. D.; Li, J. B.; Yang, G. W. Non-layered 2D materials toward advanced photoelectric devices: Progress and prospects. Mater. Horiz. 2020, 7, 2185–2207.

    Article  CAS  Google Scholar 

  27. Wang, F.; Wang, Z. X.; Wang, Q. S.; Wang, F. M.; Yin, L.; Xu, K.; Huang, Y.; He, J. Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 2015, 26, 292001.

    Article  CAS  Google Scholar 

  28. Fichthorn, K. A pathway from 3D to 2D. Nat. Mater. 2019, 18, 911–912.

    Article  CAS  Google Scholar 

  29. Li, W. G.; Wang, X. D.; Liao, J. F.; Jiang, Y.; Kuang, D. B. Enhanced on-off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films. Adv. Funct. Mater. 2020, 30, 1909701.

    Article  CAS  Google Scholar 

  30. Zhong, Y. G.; Liao, K.; Du, W. N.; Zhu, J. R.; Shang, Q. Y.; Zhou, F.; Wu, X. X.; Sui, X. Y.; Shi, J. W.; Yue, S. et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: Toward laser array application. ACS Nano 2020, 14, 15605–15615.

    Article  CAS  Google Scholar 

  31. Jia, T.; Rebec, S. N.; Tang, S. J.; Xu, K. J.; Sohail, H. M.; Hashimoto, M.; Lu, D. H.; Moore, R. G.; Shen, Z. X. Epitaxial growth of TiSe2/TiO2 heterostructure. 2D Mater. 2019, 6, 011008.

    Article  CAS  Google Scholar 

  32. Fu, H. C.; Ramalingam, V.; Kim, H.; Lin, C. H.; Fang, X. S.; Alshareef, H. N.; He, J. H. Mxene-contacted silicon solar cells with 11. 5% efficiency. Adv. Energy Mater. 2019, 9, 1900180.

    Article  CAS  Google Scholar 

  33. Deshpande, V.; Djara, V.; O’Connor, E.; Hashemi, P.; Balakrishnan, K.; Sousa, M.; Caimi, D.; Olziersky, A.; Czornomaz, L.; Fompeyrine, J. Advanced 3D monolithic hybrid CMOS with sub-50 nm gate inverters featuring replacement metal gate (RMG)-InGaAs nFETs on SiGe-OI fin pFETs. In 2015 IEEE International Electron Devices Meeting, Washington, USA, 2015.

  34. Chen, J.; Morrow, D. J.; Fu, Y. P.; Zheng, W. H.; Zhao, Y. Z.; Dang, L. N.; Stolt, M. J.; Kohler, D. D.; Wang, X. X.; Czech, K. J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 2017, 139, 13525–13532.

    Article  CAS  Google Scholar 

  35. Ji, L.; Hsu, H. Y.; Lee, J. C.; Bard, A. J.; Yu, E. T. Highperformance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Lett. 2018, 18, 994–1000.

    Article  CAS  Google Scholar 

  36. Lee, L.; Baek, J.; Park, K. S.; Lee, Y. E.; Shrestha, N. K.; Sung, M. M. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nat. Commun. 2017, 8, 15882.

    Article  CAS  Google Scholar 

  37. Wang, Y. F.; Yang, F.; Li, X. Z.; Ru, F.; Liu, P.; Wang, L.; Ji, W.; Xia, J.; Meng, X. M. Epitaxial growth of large-scale orthorhombic CsPbBr3 perovskite thin films with anisotropic photoresponse property. Adv. Funct. Mater. 2019, 29, 1904913.

    Article  CAS  Google Scholar 

  38. Wang, Y. F.; Li, X. Z.; Liu, P.; Xia, J.; Meng, X. M. Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection. J. Semicond. 2021, 42, 112001.

    Article  CAS  Google Scholar 

  39. Avila, J. R.; Qadri, S. B.; Freitas, J. A. Jr.; Nepal, N.; Boris, D. R.; Walton, S. G.; Eddy, C. R. Jr.; Wheeler, V. D. Impact of growth conditions on the phase selectivity and epitaxial quality of TiO2 films grown by the plasma-assisted atomic layer deposition. Chem. Mater. 2019, 31, 3900–3908.

    Article  CAS  Google Scholar 

  40. Wang, Y. P.; Shi, Y. F.; Xin, G. Q.; Lian, J.; Shi, J. Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 2015, 15, 4741–4749.

    Article  CAS  Google Scholar 

  41. Wang, X. D.; Li, W. G.; Liao, J. F.; Kuang, D. B. Recent advances in halide perovskite single-crystal thin films: Fabrication methods and optoelectronic applications. Solar RRL 2019, 3, 1800294.

    Article  CAS  Google Scholar 

  42. Egerton, R. Radiation damage and nanofabrication in tem and stem. Microsc. Today 2021, 29, 56–59.

    Article  CAS  Google Scholar 

  43. Egerton, R. F. Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV. Microsc. Res. Tech. 2012, 75, 1550–1556.

    Article  CAS  Google Scholar 

  44. Bennewitz, R.; Schär, S.; Barwich, V.; Pfeiffer, O.; Meyer, E.; Krok, F.; Such, B.; Kolodzej, J.; Szymonski, M. Atomic-resolution images of radiation damage in KBr. Surf. Sci. 2001, 474, L197–L202.

    Article  CAS  Google Scholar 

  45. Lehnert, T.; Kretschmer, S.; Bräuer, F.; Krasheninnikov, A. V.; Kaiser, U. Quasi-two-dimensional NaCl crystals encapsulated between graphene sheets and their decomposition under an electron beam. Nanoscale 2021, 13, 19626–19633.

    Article  CAS  Google Scholar 

  46. Cao, H. Q.; Wang, G. Z.; Zhang, S. C.; Zhang, X. R. Growth and photoluminescence properties of PbS nanocubes. Nanotechnology 2006, 17, 3280–3287.

    Article  CAS  Google Scholar 

  47. Smith, G. D.; Firth, S.; Clark, R. J. H.; Cardona, M. First- and second-order Raman spectra of galena (PbS). J. Appl. Phys. 2002, 92, 4375–4380.

    Article  CAS  Google Scholar 

  48. Krauss, T. D.; Wise, F. W. Raman-scattering study of exciton-phonon coupling in PbS nanocrystals. Phys. Rev. B 1997, 55, 9860–9865.

    Article  CAS  Google Scholar 

  49. Deng, B.; Zhong, S. L.; Wang, D. H.; Wang, S. S.; Zhang, T. K.; Qu, W. G.; Xu, A. W. High yield synthesis of matchstick-like PbS nanocrystals using mesoporous organosilica as template. Nanoscale 2011, 3, 1014–1021.

    Article  CAS  Google Scholar 

  50. Lee, D. K.; Kim, S.; Oh, S.; Choi, J. Y.; Lee, J. L.; Yu, H. K. Water-soluble epitaxial NaCl thin film for fabrication of flexible devices. Sci. Rep. 2017, 7, 8716.

    Article  CAS  Google Scholar 

  51. Dong, W. J.; Kim, S.; Park, J. Y.; Yu, H. K.; Lee, J. L. Ultrafast and chemically stable transfer of au nanomembrane using a water-soluble NaCl sacrificial layer for flexible solar cells. ACS Appl. Mater. Interfaces 2019, 11, 30477–30483.

    Article  CAS  Google Scholar 

  52. Wang, H.; Schechtel, E.; Pei, Y. Z.; Snyder, G. J. High thermoelectric efficiency of n-type PbS. Adv. Energy Mater. 2013, 3, 488–495.

    Article  CAS  Google Scholar 

  53. Johnsen, S.; He, J. Q.; Androulakis, J.; Dravid, V. P.; Todorov, I.; Chung, D. Y.; Kanatzidis, M. G. Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 2011, 133, 3460–3470.

    Article  CAS  Google Scholar 

  54. Xiao, X. B.; Xu, K. M.; Yin, M.; Qiu, Y.; Zhou, W. J.; Zheng, L.; Cheng, X. H.; Yu, Y. H.; Ning, Z. J. High quality silicon: Colloidal quantum dot heterojunction based infrared photodetector. Appl. Phys. Lett. 2020, 116, 101102.

    Article  CAS  Google Scholar 

  55. Wen, Y.; Wang, Q. S.; Yin, L.; Liu, Q.; Wang, F.; Wang, F. M.; Wang, Z. X.; Liu, K. L.; Xu, K.; Huang, Y. et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater. 2016, 28, 8051–8057.

    Article  CAS  Google Scholar 

  56. Wang, F.; Wang, Z. X.; Xu, K.; Wang, F. M.; Wang, Q. S.; Huang, Y.; Yin, L.; He, J. Tunable GaTe-MoS2 van der Waals p—n junctions with novel optoelectronic performance. Nano Lett. 2015, 15, 7558–7566.

    Article  CAS  Google Scholar 

  57. Akkerman, Q. A.; Martin-Garcia, B.; Buha, J.; Almeida, G.; Toso, S.; Marras, S.; Bonaccorso, F.; Petralanda, U.; Infante, I.; Manna, L. Ultrathin orthorhombic PbS nanosheets. Chem. Mater. 2019, 31, 8145–8153.

    Article  CAS  Google Scholar 

  58. Nian, Q.; Gao, L.; Hu, Y. W.; Deng, B. W.; Tang, J.; Cheng, G. J. Graphene/PbS-quantum dots/graphene sandwich structures enabled by laser shock imprinting for high performance photodetectors. ACS Appl. Mater. Interfaces 2017, 9, 44715–44723.

    Article  CAS  Google Scholar 

  59. Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654.

    Article  CAS  Google Scholar 

  60. Hussain, M.; Jaffery, S. H. A.; Ali, A.; Nguyen, C. D.; Aftab, S.; Riaz, M.; Abbas, S.; Hussain, S.; Seo, Y.; Jung, J. Nir self-powered photodetection and gate tunable rectification behavior in 2D GeSe/MoSe2 heterojunction diode. Sci. Rep. 2021, 11, 3688.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Beijing Advanced Innovation Center for Intelligent Robots and Systems in Beijing Institute of Technology for the use of FIB and TEM. Financial support was provided by the National Natural Science Foundation of China (No. 11704389), the Scientific Equipment Development Project and Youth Innovation Promotion Association Project of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Xia or Xiangmin Meng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xia, J., Li, X. et al. Vapor phase epitaxy of PbS single-crystal films on water-soluble substrates and application to photodetectors. Nano Res. 15, 5402–5409 (2022). https://doi.org/10.1007/s12274-022-4101-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4101-4

Keywords

Navigation