Skip to main content
Log in

Bioinspired nanofluidic iontronics for brain-like computing

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The human brain performs computations via a highly interconnected network of neurons. Taking inspiration from the information delivery and processing mechanism of the human brain in central nervous systems, bioinspired nanofluidic iontronics has been proposed and gradually engineered to overcome the limitations of the conventional electron-based von Neumann architecture, which shows the promising potential to enable efficient brain-like computing. Anomalous and tunable nanofluidic ion transport behaviors and spatial confinement show promising controllability of charge carriers, and a wide range of structural and chemical modification paves new ways for realizing brain-like functions. Herein, a comprehensive framework of mechanisms and design strategy is summarized to enable the rational design of nanofluidic systems and facilitate the further development of bioinspired nanofluidic iontronics. This review provides recent advances and prospects of the bioinspired nanofluidic iontronics, including ion-based brain computing, comprehension of intrinsic mechanisms, design of artificial nanochannels, and the latest artificial neuromorphic functions devices. Furthermore, the challenges and opportunities of bioinspired nanofluidic iontronics in the pioneering and interdisciplinary research fields are proposed, including brain–computer interfaces and artificial neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raichle, M. E.; Gusnard, D. A. Appraising the brain’s energy budget. Proc. Natl. Acad. Sci. USA 2002, 99, 10237–10239.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Engl, E.; Attwell, D. Non-signalling energy use in the brain. J. Physiol. 2015, 593, 3417–3429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mehonic, A.; Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 2022, 604, 255–260.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Rajaraman, V. Frontier—World’s first ExaFLOPS supercomputer. Resonance 2023, 28, 567–576.

    Article  Google Scholar 

  5. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T. et al. A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 2018, 362, 1140–1144.

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  6. Schuman, C. D.; Kulkarni, S. R.; Parsa, M.; Mitchell, J. P.; Date, P.; Kay, B. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2022, 2, 10–19.

    Article  PubMed  Google Scholar 

  7. Grollier, J.; Querlioz, D.; Camsari, K. Y.; Everschor-Sitte, K.; Fukami, S.; Stiles, M. D. Neuromorphic spintronics. Nat. Electron. 2020, 3, 360–370.

    Article  Google Scholar 

  8. Loeffler, A.; Diaz-Alvarez, A.; Zhu, R. M.; Ganesh, N.; Shine, J. M.; Nakayama, T.; Kuncic, Z. Neuromorphic learning, working memory, and metaplasticity in nanowire networks. Sci. Adv. 2023, 9, eadg3289.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 2015, 16, 487–497.

    Article  CAS  PubMed  Google Scholar 

  10. Hao, X. C.; Ou, M. C.; Zhang, D. H.; Zhao, W. L.; Yang, Y. X.; Liu, J.; Yang, H.; Zhu, T.; Li, Y.; Zhou, C. The effects of general anesthetics on synaptic transmission. Curr. Neuropharmacol. 2020, 18, 936–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park, D. K.; Stein, I. S.; Zito, K. Ion flux-independent NMDA receptor signaling. Neuropharmacology 2022, 210, 109019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Voglis, G.; Tavernarakis, N. The role of synaptic ion channels in synaptic plasticity. EMBO Rep. 2006, 7, 1104–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reber, P. J. The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia 2013, 51, 2026–2042.

    Article  PubMed  Google Scholar 

  14. Zhang, J. R.; Liu, W. C.; Dai, J. Q.; Xiao, K. Nanoionics from biological to artificial systems: An alternative beyond nanoelectronics. Adv. Sci. 2022, 9, 2200534.

    Article  CAS  Google Scholar 

  15. Yu, J. R.; Wang, Y. F.; Qin, S. S.; Gao, G. Y.; Xu, C.; Wang, Z. L.; Sun, Q. J. Bioinspired interactive neuromorphic devices. Mater. Today 2022, 60, 158–182.

    Article  CAS  Google Scholar 

  16. Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607–617.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510.

    Article  Google Scholar 

  18. Kumar, S.; Wang, X. X.; Strachan, J. P.; Yang, Y. C.; Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 2022, 7, 575–591.

    Article  ADS  Google Scholar 

  19. Krogh, A. What are artificial neural networks. Nat. Biotechnol. 2008, 26, 195–197.

    Article  CAS  PubMed  Google Scholar 

  20. Feng, J. D.; Liu, K.; Graf, M.; Dumcenco, D.; Kis, A.; Di Ventra, M.; Radenovic, A. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 2016, 15, 850–855.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Kavokine, N.; Marbach, S.; Siria, A.; Bocquet, L. Ionic Coulomb blockade as a fractional Wien effect. Nat. Nanotechnol. 2019, 14, 573–578.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Xue, Y. H.; Xia, Y.; Yang, S.; Alsaid, Y.; Fong, K. Y.; Wang, Y.; Zhang, X. Atomic-scale ion transistor with ultrahigh diffusivity. Science 2021, 372, 501–503.

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Gopinadhan, K.; Hu, S.; Esfandiar, A.; Lozada-Hidalgo, M.; Wang, F. C.; Yang, Q.; Tyurnina, A. V.; Keerthi, A.; Radha, B.; Geim, A. K. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 2019, 363, 145–148.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Wang, M.; Hou, Y. Q.; Yu, L. J.; Hou, X. Anomalies of ionic/molecular transport in nano and sub-nano confinement. Nano Lett. 2020, 20, 6937–6946.

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Bocquet, L. Nanofluidics coming of age. Nat. Mater. 2020, 19, 254–256.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Kim, D.; Lee, J. S. Liquid-based memory devices for next-generation computing. ACS Appl. Electron. Mater. 2023, 5, 664–673.

    Article  CAS  ADS  Google Scholar 

  27. Hou, Y. Q.; Ling, Y. X.; Wang, Y. Q.; Wang, M.; Chen, Y. Y.; Li, X. P.; Hou, X. Learning from the brain: Bioinspired nanofluidics. J. Phys. Chem. Lett. 2023, 14, 2891–2900.

    Article  CAS  PubMed  Google Scholar 

  28. Chun, H.; Chung, T. D. Iontronics. Annu. Rev. Anal. Chem. 2015, 8, 441–462.

    Article  CAS  ADS  Google Scholar 

  29. Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687–691.

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  30. Hou, Y. Q.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628–629.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Robin, P.; Emmerich, T.; Ismail, A.; Niguès, A.; You, Y.; Nam, G. H.; Keerthi, A.; Siria, A.; Geim, A. K.; Radha, B.; Bocquet, L. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 2023, 379, 161–167.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Zhang, X. Q.; Jiang, L. Quantum-confined ion superfluid in nerve signal transmission. Nano Res. 2019, 12, 1219–1221.

    Article  CAS  Google Scholar 

  33. Kefauver, J. M.; Ward, A. B.; Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 2020, 587, 567–576.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Gazzaniga, M. S. Organization of the human brain. Science 1989, 245, 947–952.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Pessoa, L. Understanding brain networks and brain organization. Phys. Life Rev. 2014, 11, 400–435.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  36. Toni, N.; Teng, E. M.; Bushong, E. A.; Aimone, J. B.; Zhao, C. M.; Consiglio, A.; van Praag, H.; Martone, M. E.; Ellisman, M. H.; Gage, F. H. Synapse formation on neurons born in the adult hippocampus. Nat. Neurosci. 2007, 10, 727–734.

    Article  CAS  PubMed  Google Scholar 

  37. Nicoll, R. A.; Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat. Rev. Neurosci. 2005, 6, 863–876.

    Article  CAS  PubMed  Google Scholar 

  38. Duman, R. S.; Aghajanian, G. K. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012, 338, 68–72.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Paulsen, O.; Moser, E. A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci. 1998, 21, 273–278.

    Article  CAS  PubMed  Google Scholar 

  40. Pereda, A. E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 2014, 15, 250–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schumacher, M. A.; Rivard, A. F.; Bächinger, H. P.; Adelman, J. P. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 2001, 410, 1120–1124.

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Daw, N. W.; Stein, P. S. G.; Fox, K. The role of NMDA receptors in information processing. Annu. Rev. Neurosci. 1993, 16, 207–222.

    Article  CAS  PubMed  Google Scholar 

  43. Wu, L. G.; Borst, J. G. G.; Sakmann, B. R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc. Natl. Acad. Sci. USA 1998, 95, 4720–4725.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Tyler, W. J. The mechanobiology of brain function. Nat. Rev. Neurosci. 2012, 13, 867–878.

    Article  CAS  PubMed  Google Scholar 

  45. LaPlaca, M. C.; Prado, G. R. Neural mechanobiology and neuronal vulnerability to traumatic loading. J. Biomech. 2010, 43, 71–78.

    Article  PubMed  Google Scholar 

  46. Hu, W.; An, C. Y.; Chen, W. J. Molecular mechanoneurobiology: An emerging angle to explore neural synaptic functions. BioMed Res. Int. 2015, 2015, 486827.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Etzion, Y.; Grossman, Y. Pressure-induced depression of synaptic transmission in the cerebellar parallel fibre synapse involves suppression of presynaptic N-type Ca2+ channels. Eur. J. Neurosci. 2000, 12, 4007–4016.

    Article  CAS  PubMed  Google Scholar 

  48. Maingret, F.; Fosset, M.; Lesage, F.; Lazdunski, M.; Honoré, E. TRAAK is a mammalian neuronal mechano-gated K+ channel. J. Biol. Chem. 1999, 274, 1381–1387.

    Article  CAS  PubMed  Google Scholar 

  49. Tabarean, I. V.; Morris, C. E. Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3–S4 linker deletions. Biophys. J. 2002, 82, 2982–2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu, J. D.; Zhang, T.; Yang, Y. C.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312.

    Article  CAS  ADS  Google Scholar 

  51. Abraham, W. C.; Jones, O. D.; Glanzman, D. L. Is plasticity of synapses the mechanism of long-term memory storage. npj Sci. Learn. 2019, 4, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Adams, J. P.; Dudek, S. M. Late-phase long-term potentiation: Getting to the nucleus. Nat. Rev. Neurosci. 2005, 6, 737–743.

    Article  CAS  PubMed  Google Scholar 

  53. Grover, L. M.; Teyler, T. J. Two components of long-term potentiation induced by different patterns of afferent activation. Nature 1990, 347, 477–479.

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Lynch, G.; Muller, D.; Seubert, P.; Larson, J. Long-term potentiation: Persisting problems and recent results. Brain Res. Bull. 1988, 21, 363–372.

    Article  CAS  PubMed  Google Scholar 

  55. Caporale, N.; Dan, Y. Spike timing-dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46.

    Article  CAS  PubMed  Google Scholar 

  56. Blackmore, D. G.; Turpin, F.; Palliyaguru, T.; Evans, H. T.; Chicoteau, A.; Lee, W.; Pelekanos, M.; Nguyen, N.; Song, J.; Sullivan, R. K. P. et al. Low-intensity ultrasound restores long-term potentiation and memory in senescent mice through pleiotropic mechanisms including NMDAR signaling. Mol. Psychiatry 2021, 26, 6975–6991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peng, L. M.; Zhang, Z. Y.; Qiu, C. G. Carbon nanotube digital electronics. Nat. Electron. 2019, 2, 499–505.

    Article  CAS  Google Scholar 

  58. Sheng, Q.; Xie, Y. B.; Li, J.; Wang, X. W.; Xue, J. M. Transporting an ionic-liquid/water mixture in a conical nanochannel: A nanofluidic memristor. Chem. Commun. 2017, 53, 6125–6127.

    Article  CAS  Google Scholar 

  59. Xiong, T. Y.; Li, C. W.; He, X. L.; Xie, B. Y.; Zong, J. W.; Jiang, Y. N.; Ma, W. J.; Wu, F.; Fei, J. J.; Yu, P. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156–161.

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Zhang, P.; Xia, M.; Zhuge, F. W.; Zhou, Y.; Wang, Z. Y.; Dong, B. Y.; Fu, Y. Y.; Yang, K. C.; Li, Y.; He, Y. H. et al. Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 2019, 19, 4279–4286.

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Najem, J. S.; Taylor, G. J.; Weiss, R. J.; Hasan, M. S.; Rose, G.; Schuman, C. D.; Belianinov, A.; Collier, C. P.; Sarles, S. A. Memristive ion channel-doped biomembranes as synaptic mimics. ACS Nano 2018, 12, 4702–4711.

    Article  CAS  PubMed  Google Scholar 

  62. Guerrette, J. P.; Zhang, B. Scan-rate-dependent current rectification of cone-shaped silica nanopores in quartz nanopipettes. J. Am. Chem. Soc. 2010, 132, 17088–17091.

    Article  CAS  PubMed  Google Scholar 

  63. Conroy, D. T.; Craster, R. V.; Matar, O. K.; Cheng, L. J.; Chang, H. C. Nonequilibrium hysteresis and Wien effect water dissociation at a bipolar membrane. Phys. Rev. E 2012, 86, 056104.

    Article  CAS  ADS  Google Scholar 

  64. Wang, D. C.; Kvetny, M.; Liu, J.; Brown, W.; Li, Y.; Wang, G. L. Transmembrane potential across single conical nanopores and resulting memristive and memcapacitive ion transport. J. Am. Chem. Soc. 2012, 134, 3651–3654.

    Article  CAS  PubMed  Google Scholar 

  65. Noy, A.; Darling, S. B. Nanofluidic computing makes a splash. Science 2023, 379, 143–144.

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Gerasimov, J. Y.; Gabrielsson, R.; Forchheimer, R.; Stavrinidou, E.; Simon, D. T.; Berggren, M.; Fabiano, S. An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. 2019, 6, 1801339.

    Article  Google Scholar 

  67. Bu, Y.; Ahmed, Z.; Yobas, L. A nanofluidic memristor based on ion concentration polarization. Analyst 2019, 144, 7168–7172.

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Leong, I. W.; Tsutsui, M.; Murayama, S.; Hayashida, T.; He, Y. H.; Taniguchi, M. Quasi-stable salt gradient and resistive switching in solid-state nanopores. ACS Appl. Mater. Interfaces 2020, 12, 52175–52181.

    Article  CAS  PubMed  Google Scholar 

  69. Chougale, M. Y.; Patil, S. R.; Shinde, S. P.; Khot, S. S.; Patil, A. A.; Khot, A. C.; Chougule, S. S.; Volos, C. K.; Kim, S.; Dongale, T. D. Memristive switching in ionic liquid-based two-terminal discrete devices. Ionics 2019, 25, 5575–5583.

    Article  CAS  Google Scholar 

  70. Sun, G. C.; Slouka, Z.; Chang, H. C. Fluidic-based ion memristors and ionic latches. Small 2015, 11, 5206–5213.

    Article  CAS  PubMed  Google Scholar 

  71. Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.

    Article  CAS  Google Scholar 

  72. Hao, Y. W.; Zhang, X. Q.; Jiang, L. Quantum-confined superfluid. Nanoscale Horiz. 2019, 4, 1029–1036.

    Article  CAS  ADS  Google Scholar 

  73. Shen, J.; Liu, G. P.; Han, Y.; Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294–312.

    Article  CAS  ADS  Google Scholar 

  74. Najem, J. S.; Hasan, M. S.; Williams, R. S.; Weiss, R. J.; Rose, G. S.; Taylor, G. J.; Sarles, S. A.; Collier, C. P. Dynamical nonlinear memory capacitance in biomimetic membranes. Nat. Commun. 2019, 10, 3239.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  75. Chen, K. X.; Tsutsui, M.; Zhuge, F. W.; Zhou, Y.; Fu, Y. Y.; He, Y. H.; Miao, X. S. Nanochannel-based interfacial memristor: Electrokinetic analysis of the frequency characteristics. Adv. Electron. Mater. 2021, 7, 2000848.

    Article  CAS  Google Scholar 

  76. Bushmaker, A. W.; Chang, C. C.; Deshpande, V. V.; Amer, M. R.; Bockrath, M. W.; Cronin, S. B. Memristive behavior observed in a defected single-walled carbon nanotube. IEEE Trans. Nanotechnol. 2011, 10, 582–586.

    Article  ADS  Google Scholar 

  77. Liu, R. C.; Kim, J. G.; Dhakal, P.; Li, W.; Ma, J.; Hou, A. L.; Merkel, C.; Qiu, J. J.; Zoran, M.; Wang, S. R. Neuromorphic properties of flexible carbon nanotube/polydimethylsiloxane nanocomposites. Adv. Compos. Hybrid Mater. 2023, 6, 14.

    Article  CAS  Google Scholar 

  78. Peng, R.; Pan, Y. Y.; Liu, B. W.; Li, Z.; Pan, P.; Zhang, S. L.; Qin, Z.; Wheeler, A. R.; Tang, X. W.; Liu, X. Y. Understanding carbon nanotube-based ionic diodes: Design and mechanism. Small 2021, 17, 2100383.

    Article  CAS  Google Scholar 

  79. Peng, R.; Pan, Y. Y.; Li, Z.; Zhang, S. L.; Wheeler, A. R.; Tang, X. W.; Liu, X. Y. Ionotronics based on horizontally aligned carbon nanotubes. Adv. Funct. Mater. 2020, 30, 2003177.

    Article  CAS  Google Scholar 

  80. Wang, M.; Meng, H. Q.; Wang, D.; Yin, Y. J.; Stroeve, P.; Zhang, Y. M.; Sheng, Z. Z.; Chen, B. Y.; Zhan, K.; Hou, X. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv. Mater. 2019, 31, 1805130.

    Article  Google Scholar 

  81. Lu, B. X.; Xiao, T. L.; Zhang, C. L.; Jiang, J. Q.; Wang, Y. T.; Diao, X. G.; Zhai, J. Brain wave-like signal modulator by ionic nanochannel rectifier bridges. Small 2022, 18, 2203104.

    Article  CAS  Google Scholar 

  82. Zhu, J. D.; Yang, Y. C.; Jia, R. D.; Liang, Z. X.; Zhu, W.; Rehman, Z. U.; Bao, L.; Zhang, X. X.; Cai, Y. M.; Song, L. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 2018, 30, 1800195.

    Article  Google Scholar 

  83. Zhao, S. F.; Ran, W. H.; Lou, Z.; Li, L. L.; Poddar, S.; Wang, L. L.; Fan, Z. Y.; Shen, G. Z. Neuromorphic-computing-based adaptive learning using ion dynamics in flexible energy storage devices. Natl. Sci. Rev. 2022, 9, nwac158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wei, D.; Yang, F. Y.; Jiang, Z. H.; Wang, Z. L. Flexible iontronics based on 2D nanofluidic material. Nat. Commun. 2022, 13, 4965.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Lei, Z. Y.; Wu, P. Y. Short-term plasticity, multimodal memory, and logical responses mimicked in stretchable hydrogels. Matter 2023, 6, 429–444.

    Article  CAS  Google Scholar 

  86. Qian, T. Y.; Zhang, H. C.; Li, X. Y.; Hou, J.; Zhao, C.; Gu, Q. F.; Wang, H. T. Efficient gating of ion transport in three-dimensional metal-organic framework sub-nanochannels with confined light-responsive azobenzene molecules. Angew. Chem., Int. Ed. 2020, 59, 13051–13056.

    Article  CAS  Google Scholar 

  87. Yu, X. Q.; Li, C. Y.; Chang, J. H.; Wang, Y. J.; Xia, W. F.; Suo, J. Q.; Guan, X. Y.; Valtchev, V.; Yan, Y. S.; Qiu, S. L. et al. Gating effects for ion transport in three-dimensional functionalized covalent organic frameworks. Angew. Chem., Int. Ed. 2022, 61, e202200820.

    Article  CAS  Google Scholar 

  88. Zhang, Z.; He, L.; Zhu, C. C.; Qian, Y. C.; Wen, L. P.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  89. van de Burgt, Y.; Melianas, A.; Keene, S. T.; Malliaras, G.; Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 2018, 1, 386–397.

    Article  Google Scholar 

  90. Zhang, Y.; Wang, Z. R.; Zhu, J. D.; Yang, Y. C.; Rao, M. Y.; Song, W. H.; Zhuo, Y.; Zhang, X. M.; Cui, M. L.; Shen, L. L. et al. Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Appl. Phys. Rev. 2020, 7, 011308.

    Article  CAS  ADS  Google Scholar 

  91. Harikesh, P. C.; Yang, C. Y.; Wu, H. Y.; Zhang, S. L.; Donahue, M. J.; Caravaca, A. S.; Huang, J. D.; Olofsson, P. S.; Berggren, M.; Tu, D. et al. Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 2023, 22, 242–248.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  92. Sarkar, T.; Lieberth, K.; Pavlou, A.; Frank, T.; Mailaender, V.; McCulloch, I.; Blom, P. W. M.; Torricelli, F.; Gkoupidenis, P. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 2022, 5, 774–783.

    Article  Google Scholar 

  93. Wang, T.; Wang, M.; Wang, J. W.; Yang, L.; Ren, X. Y.; Song, G.; Chen, S. S.; Yuan, Y. H.; Liu, R. Q.; Pan, L. et al. A chemically mediated artificial neuron. Nat. Electron. 2022, 5, 586–595.

    Article  CAS  Google Scholar 

  94. Tang, X.; Shen, H.; Zhao, S. Y.; Li, N.; Liu, J. Flexible brain–computer interfaces. Nat. Electron. 2023, 6, 109–118.

    Article  Google Scholar 

  95. Sui, Y. N.; Yu, H. L.; Zhang, C.; Chen, Y.; Jiang, C. Q.; Li, L. M. Deep brain–machine interfaces: Sensing and modulating the human deep brain. Natl. Sci. Rev. 2022, 9, nwac212.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  96. Won, S. M.; Song, E. M.; Reeder, J. T.; Rogers, J. A. Emerging modalities and implantable technologies for neuromodulation. Cell 2020, 181, 115–135.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 21975209, 52273305, 22205185, 52025132, T2241022, 21621091, 22021001, and 22121001), the 111 Project (Nos. B17027 and B16029), the National Science Foundation of Fujian Province of China (No. 2022J02059), the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (No. RD2022070601), and the Tencent Foundation (The XPLORER PRIZE). The authors thank Yeyun Chen and Xuelian Yang for beneficial discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqi Hou, Miao Wang or Xu Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Li, X., Luo, C. et al. Bioinspired nanofluidic iontronics for brain-like computing. Nano Res. 17, 503–514 (2024). https://doi.org/10.1007/s12274-023-5900-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5900-y

Keywords

Navigation