Skip to main content
Log in

Iontronic components: From liquid- to solid-states

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In modern electronics, the ionic charges have not occupied the same role as the electrons mainly because of their relatively low mobilities. However, these “slow” charge carriers contribute to brain computing with high efficiency and extremely low power consumption. Inspired by the “ionic” life, iontronic components have recently attracted considerable attention. In this review, we first introduce the progress of iontronic devices operating with the involvement of water, specifically, two types of systems—nanofluidic and hydrogels. Next, the issues and challenges within these liquid-state ionic devices are summarized. To avoid the negative impact of water, we also propose two solid-state materials—ionogels and charged metal nanoparticles—to construct several basic ionic devices such as diodes and transistors. Finally, we summarize this review and outlook the promising directions for the further developments of iontronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gouaux, E.; MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 2005, 310, 1461–1465.

    CAS  Google Scholar 

  2. Chun, H. G.; Chung, T. D. Iontronics. Annu. Rev. Anal. Chem. 2015, 8, 441–462.

    CAS  Google Scholar 

  3. Guo, Y. H.; Bae, J.; Fang, Z. W.; Li, P. P.; Zhao, F.; Yu, G. H. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 2020, 120, 7642–7707.

    CAS  Google Scholar 

  4. Putra, B. R.; Tshwenya, L.; Buckingham, M. A.; Chen, J. Y.; Aoki, K. J.; Mathwig, K.; Arotiba, O. A.; Thompson, A. K.; Li, Z. K.; Marken, F. Microscale ionic diodes: An overview. Electroanalysis 2021, 33, 1398–1418.

    Google Scholar 

  5. Terabe, K.; Tsuchiya, T.; Tsuruoka, T. A variety of functional devices realized by ionic nanoarchitectonics, complementing electronics components. Adv. Electron. Mater. 2022, 8, 2100645.

    CAS  Google Scholar 

  6. Li, T. M.; Xiao, K. Solid-state iontronic devices: Mechanisms and applications. Adv. Mater. Technol. 2022, 7, 2200205.

    Google Scholar 

  7. Terabe, K.; Tsuchiya, T.; Tsuruoka, T. Solid state ionics for the development of artificial intelligence components. Jpn. J. Appl. Phys. 2022, 61, SM0803.

    Google Scholar 

  8. Quirion, R. Brain organoids: Are they for real. Front. Sci. 2023, 1, 1148127.

    Google Scholar 

  9. Laughlin, S. B.; van Steveninck, R. R. D. R.; Anderson, J. C. The metabolic cost of neural information. Nat. Neurosci. 1998, 1, 36–41.

    CAS  Google Scholar 

  10. Lovrecek, B.; Despic, A.; Bockris, J. O. M. Electrolytic junctions with rectifying properties. J. Phys. Chem. 1959, 63, 750–751.

    CAS  Google Scholar 

  11. Daiguji, H. Ion transport in nanofluidic channels. Chem. Soc. Rev. 2010, 39, 901–911.

    CAS  Google Scholar 

  12. Gonella, G.; Backus, E. H. G.; Nagata, Y.; Bonthuis, D. J.; Loche, P.; Schlaich, A.; Netz, R. R.; Kühnle, A.; McCrum, I. T.; Koper, M. T. M. et al. Water at charged interfaces. Nat. Rev. Chem. 2021, 5, 466–485.

    CAS  Google Scholar 

  13. Zhu, C. J.; Xian, W. P.; Song, Y. P.; Zuo, X. H.; Wang, Y. Q.; Ma, S. Q.; Sun, Q. Manipulating charge density in nanofluidic membranes for optimal osmotic energy production density. Adv. Funct. Mater. 2022, 32, 2109210.

    CAS  Google Scholar 

  14. Cao, L.; Chen, I. C.; Chen, C. L.; Shinde, D. B.; Liu, X. W.; Li, Z.; Zhou, Z. Y.; Zhang, Y. T.; Han, Y.; Lai, Z. P. Giant osmotic energy conversion through vertical-aligned ion-permselective nanochannels in covalent organic framework membranes. J. Am. Chem. Soc. 2022, 144, 12400–12409.

    CAS  Google Scholar 

  15. Yang, J. L.; Tu, B.; Zhang, G. J.; Liu, P. C.; Hu, K.; Wang, J. R.; Yan, Z.; Huang, Z. W.; Fang, M. N.; Hou, J. J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022, 17, 622–628.

    CAS  Google Scholar 

  16. Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. G. Stretchable, transparent, ionic conductors. Science 2013, 341, 984–987.

    CAS  Google Scholar 

  17. Reiss, H. Chemical effects due to the ionization of impurities in semiconductors. J. Chem. Phys. 1953, 21, 1209–1217.

    CAS  Google Scholar 

  18. Fuller, C. S. Some analogies between semiconductors and electrolyte solutions. Rec. Chem. Progr. 1956, 17, 75–93.

    CAS  Google Scholar 

  19. Yan, R. X.; Liang, W. J.; Fan, R.; Yang, P. D. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 2009, 9, 3820–3825.

    CAS  Google Scholar 

  20. Lei, Y. H.; Wang, W.; Wu, W. G.; Li, Z. H. Nanofluidic diode in a suspended nanoparticle crystal. Appl. Phys. Lett. 2010, 96, 263102.

    Google Scholar 

  21. Li, J.; Li, D. Q. A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel. J. Colloid Interface Sci. 2021, 596, 54–63.

    CAS  Google Scholar 

  22. Guan, W. H.; Fan, R.; Reed, M. A. Field-effect reconfigurable nanofluidic ionic diodes. Nat. Commun. 2011, 2, 506.

    Google Scholar 

  23. Vlassiouk, I.; Smirnov, S.; Siwy, Z. Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. ACS Nano 2008, 2, 1589–1602.

    CAS  Google Scholar 

  24. Perera, R. T.; Johnson, R. P.; Edwards, M. A.; White, H. S. Effect of the electric double layer on the activation energy of ion transport in conical nanopores. J. Phys. Chem. C 2015, 119, 24299–24306.

    CAS  Google Scholar 

  25. Siwy, Z.; Fuliński, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 2002, 89, 198103.

    CAS  Google Scholar 

  26. Kovarik, M. L.; Zhou, K. M.; Jacobson, S. C. Effect of conical nanopore diameter on Ion current rectification. J. Phys. Chem. B 2009, 113, 15960–15966.

    CAS  Google Scholar 

  27. Yao, H. J.; Cheng, Y. X.; Zeng, J.; Mo, D.; Duan, J. L.; Liu, J. D.; Zhai, P. F.; Sun, Y. M.; Liu, J. Bivalent ion transport through graphene/PET nanopore. Appl. Phys. A 2016, 122, 509.

    Google Scholar 

  28. Ali, M.; Ramirez, P.; Mafé, S.; Neumann, R.; Ensinger, W. A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 2009, 3, 603–608.

    CAS  Google Scholar 

  29. Martin, C. R.; Nishizawa, M.; Jirage, K.; Kang, M.; Lee, S. B. Controlling ion-transport selectivity in gold nanotubule membranes. Adv. Mater. 2001, 13, 1351–1362.

    CAS  Google Scholar 

  30. Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Fabrication of stable single nanochannels with controllable ionic rectification. Small 2010, 6, 361–365.

    CAS  Google Scholar 

  31. Nishizawa, M.; Menon, V. P.; Martin, C. R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 1995, 268, 700–702.

    CAS  Google Scholar 

  32. Siwy, Z. S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735–746.

    CAS  Google Scholar 

  33. Liu, G. C.; Gao, M. J.; Chen, W.; Hu, X. Y.; Song, L. B.; Liu, B.; Zhao, Y. D. pH-modulated ion-current rectification in a cysteine-functionalized glass nanopipette. Electrochem. Commun. 2018, 97, 6–10.

    CAS  Google Scholar 

  34. Liu, G. C.; Chen, W.; Gao, M. J.; Song, L. B.; Hu, X. Y.; Zhao, Y. D. Ion-current-rectification-based customizable pH response in glass nanopipettes via silanization. Electrochem. Commun. 2018, 93, 95–99.

    CAS  Google Scholar 

  35. Liu, S. J.; Dong, Y. T.; Zhao, W. B.; Xie, X.; Ji, T. R.; Yin, X. H.; Liu, Y.; Liang, Z. W.; Momotenko, D.; Liang, D. H. et al. Studies of ionic current rectification using polyethyleneimines coated glass nanopipettes. Anal. Chem. 2012, 84, 5565–5573.

    CAS  Google Scholar 

  36. Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R. Conical-nanotube ion-current rectifiers: The role of surface charge. J. Am. Chem. Soc. 2004, 126, 10850–10851.

    CAS  Google Scholar 

  37. Xiao, K.; Xie, G. H.; Zhang, Z.; Kong, X. Y.; Liu, Q.; Li, P.; Wen, L. P.; Jiang, L. Enhanced stability and controllability of an ionic diode based on funnel-shaped nanochannels with an extended critical region. Adv. Mater. 2016, 28, 3345–3350.

    CAS  Google Scholar 

  38. Hao, Y. W.; Zhang, X. Q.; Jiang, L. Quantum-confined superfluid. Nanoscale Horiz. 2019, 4, 1029–1036.

    CAS  Google Scholar 

  39. Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.

    CAS  Google Scholar 

  40. Cheng, L. J.; Guo, L. J. Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Lett. 2007, 7, 3165–3171.

    CAS  Google Scholar 

  41. Nandigana, V. V. R.; Jo, K.; Timperman, A.; Aluru, N. R. Asymmetric-fluidic-reservoirs induced high rectification nanofluidic diode. Sci. Rep. 2018, 8, 13941.

    Google Scholar 

  42. Dong, Q. Z.; Jiang, J. Q.; Wang, Y. T.; Zhai, J. Geometric tailoring of macroscale Ti3C2Tx MXene lamellar membrane for logic gate circuits. ACS Nano 2021, 15, 19266–19274.

    CAS  Google Scholar 

  43. Li, J.; Zhang, K. P.; Li, D. Q. pH-regulated ionic diode based on an asymmetric shaped multiple-layer polymer membrane. Anal. Chem. 2023, 95, 1419–1427.

    CAS  Google Scholar 

  44. Pérez-Mitta, G.; Marmisollé, W. A.; Trautmann, C.; Toimil-Molares, M. E.; Azzaroni, O. An all-plastic field-effect nanofluidic diode gated by a conducting polymer layer. Adv. Mater. 2017, 29, 1700972.

    Google Scholar 

  45. Bao, B.; Hao, J. R.; Bian, X. J.; Zhu, X. B.; Xiao, K.; Liao, J. W.; Zhou, J. J.; Zhou, Y. H.; Jiang, L. 3D porous hydrogel/conducting polymer heterogeneous membranes with electro-/pH-modulated ionic rectification. Adv. Mater. 2017, 29, 1702926.

    Google Scholar 

  46. Lu, J. H.; Jiang, Y. N.; Xiong, T. Y.; Yu, P.; Jiang, W.; Mao, L. Q. Light-regulated nanofluidic ionic diodes with heterogeneous channels stemming from asymmetric growth of metal–organic frameworks. Anal. Chem. 2022, 94, 4328–4334.

    CAS  Google Scholar 

  47. Zhang, Q. Q.; Hu, Z. Y.; Liu, Z. Y.; Zhai, J.; Jiang, L. Light-gating titania/alumina heterogeneous nanochannels with regulatable ion rectification characteristic. Adv. Funct. Mater. 2014, 24, 424–431.

    CAS  Google Scholar 

  48. Zhang, D.; Wang, Q. Q.; Fan, X.; Zhang, M. L.; Zhai, J.; Jiang, L. An effective dark–vis–UV ternary biomimetic switching based on N3/spiropyran-modified nanochannels. Adv. Mater. 2018, 30, 1804862.

    Google Scholar 

  49. Liu, P.; Xie, G. H.; Li, P.; Zhang, Z.; Yang, L. S.; Zhao, Y. Y.; Zhu, C. C.; Kong, X. Y.; Jiang, L.; Wen, L. P. A universal tunable nanofluidic diode via photoresponsive host–guest interactions. NPG Asia Mater. 2018, 10, 849–857.

    CAS  Google Scholar 

  50. Yang, J. L.; Hu, X. Y.; Kong, X.; Jia, P.; Ji, D. Y.; Quan, D.; Wang, L. L.; Wen, Q.; Lu, D. N.; Wu, J. Z. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 2019, 10, 1171.

    Google Scholar 

  51. Wang, D. Y.; Zheng, S.; Liu, H.; Tang, J. Y.; Miao, W. N.; Wang, H. T.; Tian, Y.; Yang, H.; Jiang, L. A magnetic gated nanofluidic based on the integration of a superhydrophilic nanochannels and a reconfigurable ferrofluid. Adv. Mater. 2019, 31, 1805953.

    Google Scholar 

  52. Xiao, K.; Chen, L.; Xie, G. H.; Li, P.; Kong, X. Y.; Wen, L. P.; Jiang, L. A bio-inspired dumbbell-shaped nanochannel with a controllable structure and ionic rectification. Nanoscale 2018, 10, 6850–6854.

    CAS  Google Scholar 

  53. Xiao, K.; Chen, L.; Zhang, Z.; Xie, G. H.; Li, P.; Kong, X. Y.; Wen, L. P.; Jiang, L. A tunable ionic diode based on a biomimetic structure-tailorable nanochannel. Angew. Chem., Int. Ed. 2017, 56, 8168–8172.

    CAS  Google Scholar 

  54. Zhang, Z.; Kong, X. Y.; Xiao, K.; Xie, G. H.; Liu, Q.; Tian, Y.; Zhang, H. C.; Ma, J.; Wen, L. P.; Jiang, L. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Adv. Mater. 2016, 28, 144–150.

    CAS  Google Scholar 

  55. Hou, X.; Yang, F.; Li, L.; Song, Y. L.; Jiang, L.; Zhu, D. B. A biomimetic asymmetric responsive single nanochannel. J. Am. Chem. Soc. 2010, 132, 11736–11742.

    CAS  Google Scholar 

  56. Zhang, Z.; Xie, G. H.; Xiao, K.; Kong, X. Y.; Li, P.; Tian, Y.; Wen, L. P.; Jiang, L. Asymmetric multifunctional heterogeneous membranes for pH- and temperature-cooperative smart ion transport modulation. Adv. Mater. 2016, 28, 9613–9619.

    CAS  Google Scholar 

  57. Wang, R.; Sun, Y.; Zhang, F.; Song, M. M.; Tian, D. M.; Li, H. B. Temperature-sensitive artificial channels through pillar[5]arene-based host–guest interactions. Angew. Chem., Int. Ed. 2017, 56, 5294–5298.

    CAS  Google Scholar 

  58. Shang, X. M.; Xie, G. H.; Kong, X. Y.; Zhang, Z.; Zhang, Y. Q.; Tian, W.; Wen, L. P.; Jiang, L. An artificial CO2-driven ionic gate inspired by olfactory sensory neurons in mosquitoes. Adv. Mater. 2017, 29, 1603884.

    Google Scholar 

  59. Xie, G. H.; Xiao, K.; Zhang, Z.; Kong, X. Y.; Liu, Q.; Li, P.; Wen, L. P.; Jiang, L. A bioinspired switchable and tunable carbonate-activated nanofluidic diode based on a single nanochannel. Angew. Chem., Int. Ed. 2015, 54, 13664–13668.

    CAS  Google Scholar 

  60. Zheng, Y. B.; Zhao, S.; Cao, S. H.; Cai, S. L.; Cai, X. H.; Li, Y. Q. A temperature, pH and sugar triple-stimuli-responsive nanofluidic diode. Nanoscale 2017, 9, 433–439.

    CAS  Google Scholar 

  61. Wu, R.; Hao, J. R.; Cui, Y. S.; Zhou, J. L.; Zhao, D. Y.; Zhang, S. T.; Wang, J.; Zhou, Y. H.; Jiang, L. Multi-control of ion transport in a field-effect iontronic device based on sandwich-structured nanochannels. Adv. Funct. Mater. 2023, 33, 2208095.

    CAS  Google Scholar 

  62. Lin, K. B.; Lin, C. Y.; Polster, J. W.; Chen, Y. F.; Siwy, Z. S. Charge inversion and calcium gating in mixtures of ions in nanopores. J. Am. Chem. Soc. 2020, 142, 2925–2934.

    CAS  Google Scholar 

  63. Zhang, Q. Q.; Zhang, Z.; Zhou, H. J.; Xie, Z. Q.; Wen, L. P.; Liu, Z. Y.; Zhai, J.; Diao, X. G. Redox switch of ionic transport in conductive polypyrrole-engineered unipolar nanofluidic diodes. Nano Res. 2017, 10, 3715–3725.

    CAS  Google Scholar 

  64. Wen, L. P.; Liu, Q.; Ma, J.; Tian, Y.; Li, C. H.; Bo, Z. S.; Jiang, L. Malachite green derivative-functionalized single nanochannel: Light-and-pH dual-driven ionic gating. Adv. Mater. 2012, 24, 6193–6198.

    CAS  Google Scholar 

  65. Karnik, R.; Fan, R.; Yue, M.; Li, D. Y.; Yang, P. D.; Majumdar, A. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 2005, 5, 943–948.

    CAS  Google Scholar 

  66. Nam, S. W.; Rooks, M. J.; Kim, K. B.; Rossnagel, S. M. Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett. 2009, 9, 2044–2048.

    CAS  Google Scholar 

  67. Cheng, L. J.; Guo, L. J. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 2009, 3, 575–584.

    CAS  Google Scholar 

  68. Gabrielsson, E. O.; Tybrandt, K.; Berggren, M. Polyphosphonium-based ion bipolar junction transistors. Biomicrofluidics 2014, 8, 064116.

    Google Scholar 

  69. Li, T.; Li, S. X.; Kong, W. Q.; Chen, C. J.; Hitz, E.; Jia, C.; Dai, J. Q.; Zhang, X.; Briber, R.; Siwy, Z. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 2019, 5, eaau4238.

    CAS  Google Scholar 

  70. Lucas, R. A.; Lin, C. Y.; Baker, L. A.; Siwy, Z. S. Ionic amplifying circuits inspired by electronics and biology. Nat. Commun. 2020, 11, 1568.

    CAS  Google Scholar 

  71. Sansom, M. S. P.; Shrivastava, I. H.; Bright, J. N.; Tate, J.; Capener, C. E.; Biggin, P. C. Potassium channels: Structures, models, simulations. Biochim. Biophys. Acta Biomembr. 2002, 1565, 294–307.

    CAS  Google Scholar 

  72. Zhang, X. Q.; Jiang, L. Quantum-confined ion superfluid in nerve signal transmission. Nano Res. 2019, 12, 1219–1221.

    CAS  Google Scholar 

  73. Xue, Y. H.; Xia, Y.; Yang, S.; Alsaid, Y.; Fong, K. Y.; Wang, Y.; Zhang, X. Atomic-scale ion transistor with ultrahigh diffusivity. Science 2021, 372, 501–503.

    CAS  Google Scholar 

  74. Cayre, O. J.; Chang, S. T.; Velev, O. D. Polyelectrolyte diode: Nonlinear current response of a junction between aqueous ionic gels. J. Am. Chem. Soc. 2007, 129, 10801–10806.

    CAS  Google Scholar 

  75. Nyamayaro, K.; Keyvani, P.; D’Acierno, F.; Poisson, J.; Hudson, Z. M.; Michal, C. A.; Madden, J. D. W.; Hatzikiriakos, S. G.; Mehrkhodavandi, P. Toward biodegradable electronics: Ionic diodes based on a cellulose nanocrystal-agarose hydrogel. ACS Appl. Mater. Interfaces 2020, 12, 52182–52191.

    CAS  Google Scholar 

  76. Wang, Y.; Wang, Z. J.; Su, Z. L.; Cai, S. Q. Stretchable and transparent ionic diode and logic gates. Extreme Mech. Lett. 2019, 28, 81–86.

    Google Scholar 

  77. Zhang, Y.; Jeong, C. K.; Wang, J. J.; Chen, X.; Choi, K. H.; Chen, L. Q.; Chen, W.; Zhang, Q. M.; Wang, Q. Hydrogel ionic diodes toward harvesting ultralow-frequency mechanical energy. Adv. Mater. 2021, 33, 2103056.

    CAS  Google Scholar 

  78. Koo, H. J.; Chang, S. T.; Velev, O. D. Ion-current diode with aqueous gel/SiO2 nanofilm interfaces. Small 2010, 6, 1393–1397.

    CAS  Google Scholar 

  79. Zhu, C. C.; Teng, Y. F.; Xie, G. H.; Li, P.; Qian, Y. C.; Niu, B.; Liu, P.; Chen, W. P.; Kong, X. Y.; Jiang, L. et al. Bioinspired hydrogel-based nanofluidic ionic diodes: Nano-confined network tuning and ion transport regulation. Chem. Commun. 2020, 56, 8123–8126.

    CAS  Google Scholar 

  80. Plett, T. S.; Cai, W. J.; Le Thai, M.; Vlassiouk, I. V.; Penner, R. M.; Siwy, Z. S. Solid-state ionic diodes demonstrated in conical nanopores. J. Phys. Chem. C 2017, 121, 6170–6176.

    CAS  Google Scholar 

  81. Tybrandt, K.; Larsson, K. C.; Richter-Dahlfors, A.; Berggren, M. Ion bipolar junction transistors. Proc. Natl. Acad. Sci. USA 2010, 107, 9929–9932.

    CAS  Google Scholar 

  82. Tybrandt, K.; Gabrielsson, E. O.; Berggren, M. Toward complementary ionic circuits: The npn ion bipolar junction transistor. J. Am. Chem. Soc. 2011, 133, 10141–10145.

    CAS  Google Scholar 

  83. Tybrandt, K.; Forchheimer, R.; Berggren, M. Logic gates based on ion transistors. Nat. Commun. 2012, 3, 871.

    Google Scholar 

  84. Huo, R.; Bao, G. Y.; He, Z. X.; Li, X.; Ma, Z. W.; Yang, Z.; Moakhar, R.; Jiang, S. B.; Chung-Tze-Cheong, C.; Nottegar, A. et al. Tough transient ionic junctions printed with ionic microgels. Adv. Funct. Mater. 2023, 33, 2213677.

    CAS  Google Scholar 

  85. So, J. H.; Koo, H. J.; Dickey, M. D.; Velev, O. D. Ionic current rectification in soft-matter diodes with liquid-metal electrodes. Adv. Funct. Mater. 2012, 22, 625–631.

    CAS  Google Scholar 

  86. Harrell, C. C.; Kohli, P.; Siwy, Z.; Martin, C. R. DNA-nanotube artificial ion channels. J. Am. Chem. Soc. 2004, 126, 15646–15647.

    CAS  Google Scholar 

  87. Maglia, G.; Heron, A. J.; Hwang, W. L.; Holden, M. A.; Mikhailova, E.; Li, Q. H.; Cheley, S.; Bayley, H. Droplet networks with incorporated protein diodes show collective properties. Nat. Nanotechnol. 2009, 4, 437–440.

    CAS  Google Scholar 

  88. Guo, Z. H.; Wang, H. L.; Shao, Y. S.; Li, L. W.; Jia, L. Y.; Pu, X. Flexible ionic diodes with high rectifying ratio and wide temperature tolerance. Adv. Funct. Mater. 2022, 32, 2112432.

    CAS  Google Scholar 

  89. Yang, Z. J.; Zhuang, Q.; Yan, Y.; Ahumada, G.; Grzybowski, B. A. An electrocatalytic reaction as a basis for chemical computing in water droplets. J. Am. Chem. Soc. 2021, 143, 16908–16912.

    CAS  Google Scholar 

  90. Mei, T. T.; Zhang, H. J.; Xiao, K. Bioinspired artificial ion pumps. ACS Nano 2022, 16, 13323–13338.

    CAS  Google Scholar 

  91. Cheng, C. Y.; McGonigal, P. R.; Schneebeli, S. T.; Li, H.; Vermeulen, N. A.; Ke, C. F.; Stoddart, J. F. An artificial molecular pump. Nat. Nanotechnol. 2015, 10, 547–553.

    CAS  Google Scholar 

  92. Jakesová, M.; Sjöström, T. A.; Đerek, V.; Poxson, D.; Berggren, M.; Głowacki, E. D.; Simon, D. T. Wireless organic electronic ion pumps driven by photovoltaics. npj Flex. Electron. 2019, 3, 14.

    Google Scholar 

  93. Zhang, Z.; Li, P.; Kong, X. Y.; Xie, G. H.; Qian, Y. C.; Wang, Z. Q.; Tian, Y.; Wen, L. P.; Jiang, L. Bioinspired heterogeneous ion pump membranes: Unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution. J. Am. Chem. Soc. 2018, 140, 1083–1090.

    CAS  Google Scholar 

  94. Xiao, K.; Chen, L.; Chen, R. T.; Heil, T.; Lemus, S. D. C.; Fan, F. T.; Wen, L. P.; Jiang, L.; Antonietti, M. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 2019, 10, 74.

    CAS  Google Scholar 

  95. Zhang, H. C.; Hou, X.; Zeng, L.; Yang, F.; Li, L.; Yan, D. D.; Tian, Y.; Jiang, L. Bioinspired artificial single ion pump. J. Am. Chem. Soc. 2013, 135, 16102–16110.

    CAS  Google Scholar 

  96. Rabinowitz, J.; Cohen, C.; Shepard, K. L. An electrically actuated, carbon-nanotube-based biomimetic ion pump. Nano Lett. 2020, 20, 1148–1153.

    CAS  Google Scholar 

  97. Xiao, K.; Wan, C. J.; Jiang, L.; Chen, X. D.; Antonietti, M. Bioinspired ionic sensory systems: The successor of electronics. Adv. Mater. 2020, 32, 2000218.

    CAS  Google Scholar 

  98. Xiao, K.; Tu, B.; Chen, L.; Heil, T.; Wen, L. P.; Jiang, L.; Antonietti, M. Photo-driven ion transport for a photodetector based on an asymmetric carbon nitride nanotube membrane. Angew. Chem., Int. Ed. 2019, 58, 12574–12579.

    CAS  Google Scholar 

  99. Chun, K. Y.; Son, Y. J.; Jeon, E. S.; Lee, S.; Han, C. S. A self-powered sensor mimicking slow- and fast-adapting cutaneous mechanoreceptors. Adv. Mater. 2018, 30, 1706299.

    Google Scholar 

  100. Xie, G. H.; Li, P.; Zhang, Z.; Xiao, K.; Kong, X. Y.; Wen, L. P.; Jiang, L. Skin-inspired low-grade heat energy harvesting using directed ionic flow through conical nanochannels. Adv. Energy Mater. 2018, 8, 1800459.

    Google Scholar 

  101. Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019, 3, 2364–2380.

    CAS  Google Scholar 

  102. Schroeder, T. B. H.; Guha, A.; Lamoureux, A.; VanRenterghem, G.; Sept, D.; Shtein, M.; Yang, J.; Mayer, M. An electric-eel-inspired soft power source from stacked hydrogels. Nature 2017, 552, 214–218.

    CAS  Google Scholar 

  103. Macha, M.; Marion, S.; Nandigana, V. V. R.; Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 2019, 4, 588–605.

    CAS  Google Scholar 

  104. Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S. C.; Moore, A. L.; Gust, D.; Moore, T. A. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 1997, 385, 239–241.

    CAS  Google Scholar 

  105. Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202–207.

    CAS  Google Scholar 

  106. Hwang, J.; Sekimoto, T.; Hsu, W. L.; Kataoka, S.; Endo, A.; Daiguji, H. Thermal dependence of nanofluidic energy conversion by reverse electrodialysis. Nanoscale 2017, 9, 12068–12076.

    CAS  Google Scholar 

  107. Liu, P.; Sun, Y.; Zhu, C. C.; Niu, B.; Huang, X. D.; Kong, X. Y.; Jiang, L.; Wen, L. P. Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting. Nano Lett. 2020, 20, 3593–3601.

    CAS  Google Scholar 

  108. Sekine, Y.; Ikeda-Fukazawa, T. Structural changes of water in a hydrogel during dehydration. J. Chem. Phys. 2009, 130, 034501.

    Google Scholar 

  109. Le Floch, P.; Yao, X.; Liu, Q. H.; Wang, Z. J.; Nian, G. D.; Sun, Y.; Jia, L.; Suo, Z. G. Wearable and washable conductors for active textiles. ACS Appl. Mater. Interfaces 2017, 9, 25542–25552.

    CAS  Google Scholar 

  110. Han, J. H.; Kim, K. B.; Kim, H. C.; Chung, T. D. Ionic circuits based on polyelectrolyte diodes on a microchip. Angew. Chem., Int. Ed. 2009, 48, 3830–3833.

    CAS  Google Scholar 

  111. Ding, Y.; Zhang, J. J.; Chang, L.; Zhang, X. Q.; Liu, H. L.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 2017, 29, 1704253.

    Google Scholar 

  112. Wang, M. X.; Zhang, P. Y.; Shamsi, M.; Thelen, J. L.; Qian, W.; Truong, V. K.; Ma, J.; Hu, J.; Dickey, M. D. Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 2022, 21, 359–365.

    CAS  Google Scholar 

  113. Li, W. Z.; Li, L. L.; Zheng, S. J.; Liu, Z. Y.; Zou, X. Y.; Sun, Z.; Guo, J. N.; Yan, F. Recyclable, healable, and tough ionogels insensitive to crack propagation. Adv. Mater. 2022, 34, 2203049.

    CAS  Google Scholar 

  114. Cao, Z. Q.; Liu, H. L.; Jiang, L. Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Mater. Horiz. 2020, 7, 912–918.

    CAS  Google Scholar 

  115. Cho, J. H.; Lee, J.; Xia, Y.; Kim, B.; He, Y. Y.; Renn, M. J.; Lodge, T. P.; Frisbie, C. D. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 2008, 7, 900–906.

    CAS  Google Scholar 

  116. Cho, J. H.; Lee, J.; He, Y.; Kim, B. S.; Lodge, T. P.; Frisbie, C. D. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 2008, 20, 686–690.

    CAS  Google Scholar 

  117. Sun, Q. J.; Seung, W.; Kim, B. J.; Seo, S.; Kim, S. W.; Cho, J. H. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 2015, 27, 3411–3417.

    CAS  Google Scholar 

  118. Sun, X. Q.; Luo, H. M.; Dai, S. Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle. Chem. Rev. 2012, 112, 2100–2128.

    CAS  Google Scholar 

  119. Allen, D.; Baston, G.; Bradley, A. E.; Gorman, T.; Haile, A.; Hamblett, I.; Hatter, J. E.; Healey, M. J. F.; Hodgson, B.; Lewin, R. et al. An investigation of the radiochemical stability of ionic liquids. Green Chem. 2002, 4, 152–158.

    CAS  Google Scholar 

  120. Zhu, M. G.; Xiao, H. S.; Yan, G. P.; Sun, P. K.; Jiang, J. H.; Cui, Z.; Zhao, J. W.; Zhang, Z. Y.; Peng, L. M. Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat. Electron. 2020, 3, 622–629.

    CAS  Google Scholar 

  121. Jiang, F.; Poh, W. C.; Chen, J. T.; Gao, D. C.; Jiang, F.; Guo, X. Y.; Chen, J.; Lee, P. S. Ion rectification based on gel polymer electrolyte ionic diode. Nat. Commun. 2022, 13, 6669.

    CAS  Google Scholar 

  122. Kim, H. J.; Chen, B.; Suo, Z.; Hayward, R. C. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 2020, 367, 773–776.

    CAS  Google Scholar 

  123. Yan, Y.; Warren, S. C.; Fuller, P.; Grzybowski, B. A. Chemoelectronic circuits based on metal nanoparticles. Nat. Nanotechnol. 2016, 11, 603–608.

    CAS  Google Scholar 

  124. Zhao, X.; Tu, B.; Li, M. Y.; Feng, X. J.; Zhang, Y. C.; Fang, Q. J.; Li, T. H.; Grzybowski, B. A.; Yan, Y. Switchable counterion gradients around charged metallic nanoparticles enable reception of radio waves. Sci. Adv. 2018, 4, eaau3546.

    CAS  Google Scholar 

  125. Zhao, X.; Yang, L.; Guo, J. H.; Xiao, T.; Zhou, Y.; Zhang, Y. C.; Tu, B.; Li, T. H.; Grzybowski, B. A.; Yan, Y. Transistors and logic circuits based on metal nanoparticles and ionic gradients. Nat. Electron. 2021, 4, 109–115.

    CAS  Google Scholar 

  126. Kim, S.; Choi, H.; Kim, B.; Lim, G.; Kim, T.; Lee, M.; Ra, H.; Yeom, J.; Kim, M.; Kim, E. et al. Extreme ion-transport inorganic 2D membranes for nanofluidic applications. Adv. Mater., in press, https://doi.org/10.1002/adma.202206354.

  127. Kim, S.; Choi, S.; Lee, H. G.; Jin, D. N.; Kim, G.; Kim, T.; Lee, J. S.; Shim, W. Neuromorphic van der Waals crystals for substantial energy generation. Nat. Commun. 2021, 12, 47.

    CAS  Google Scholar 

  128. Li, X. Y.; Zhang, H. C.; Wang, P. Y.; Hou, J.; Lu, J.; Easton, C. D.; Zhang, X. W.; Hill, M. R.; Thornton, A. W.; Liu, J. Z. et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat. Commun. 2019, 10, 2490.

    Google Scholar 

  129. Zhang, J. R.; Liu, W. C.; Dai, J. Q.; Xiao, K. Nanoionics from biological to artificial systems: An alternative beyond nanoelectronics. Adv. Sci. (Weinh.) 2022, 9, 2200534.

    CAS  Google Scholar 

  130. Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687–691.

    CAS  Google Scholar 

  131. Hou, Y. Q.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628–629.

    CAS  Google Scholar 

  132. Xiong, T. Y.; Li, C. W.; He, X. L.; Xie, B. Y.; Zong, J. W.; Jiang, Y. A.; Ma, W. J.; Wu, F.; Fei, J. J.; Yu, P. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156–161.

    CAS  Google Scholar 

  133. Keene, S. T.; Lubrano, C.; Kazemzadeh, S.; Melianas, A.; Tuchman, Y.; Polino, G.; Scognamiglio, P.; Cinà, L.; Salleo, A.; van De Burgt, Y. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 2020, 19, 969–973.

    CAS  Google Scholar 

  134. Pereda, A. E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 2014, 15, 250–263.

    CAS  Google Scholar 

  135. Qin, S. C.; Wang, F. Q.; Liu, Y. J.; Wan, Q.; Wang, X. R.; Xu, Y. B.; Shi, Y.; Wang, X. M.; Zhang, R. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater. 2017, 4, 035022.

    Google Scholar 

  136. Chen, F. D.; Zhang, S.; Hu, L.; Fan, J. J.; Lin, C. H.; Guan, P. Y.; Zhou, Y. Z.; Wan, T.; Peng, S. H.; Wang, C. H. et al. Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition. Adv. Funct. Mater. 2023, 2300266.

  137. Wang, Y.; Gong, Y.; Yang, L.; Xiong, Z. Y.; Lv, Z. Y.; Xing, X. C.; Zhou, Y.; Zhang, B.; Su, C. L.; Liao, Q. F. et al. MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 2021, 31, 2100144.

    CAS  Google Scholar 

  138. Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

    CAS  Google Scholar 

  139. Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607–617.

    CAS  Google Scholar 

  140. Fuller, E. J.; Keene, S. T.; Melianas, A.; Wang, Z. R.; Agarwal, S.; Li, Y. Y.; Tuchman, Y.; James, C. D.; Marinella, M. J.; Yang, J. J. et al. A. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 2019, 364, 570–574.

    CAS  Google Scholar 

  141. Zhu, X. J.; Li, D.; Liang, X. G.; Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 2019, 18, 141–148.

    CAS  Google Scholar 

  142. Tang, J. S.; Yuan, F.; Shen, X. K.; Wang, Z. R.; Rao, M. Y.; He, Y. Y.; Sun, Y. H.; Li, X. Y.; Zhang, W. B.; Li, Y. J. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges. Adv. Mater. 2019, 31, 1902761.

    CAS  Google Scholar 

  143. Raspopovic, S. Advancing limb neural prostheses. Science 2020, 370, 290–291.

    CAS  Google Scholar 

  144. Li, C. C.; Li, G. F.; Jiang, G. Z.; Chen, D. S.; Liu, H. H. Surface EMG data aggregation processing for intelligent prosthetic action recognition. Neural Comput. Appl. 2020, 32, 16795–16806.

    Google Scholar 

  145. Guo, J. H.; Liu, L.; Bian, B. A.; Wang, J. Y.; Zhao, X.; Zhang, Y. C.; Yan, Y. Field-created coordinate cation bridges enable conductance modulation and artificial synapse within metal nanoparticles. Nano Lett. 2022, 22, 6794–6801.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22071037 and 22201054), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36000000), and the China Postdoctoral Science Foundation(No. 2021M700983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Zhao, X., Zhang, Y. et al. Iontronic components: From liquid- to solid-states. Nano Res. 16, 13343–13357 (2023). https://doi.org/10.1007/s12274-023-5914-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5914-5

Keywords

Navigation