Skip to main content
Log in

Memristive switching in ionic liquid–based two-terminal discrete devices

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, we have developed discrete and two-terminal memristive devices using 1-butyl-3-methylimidazolium bromide [Bmim][Br] ionic liquid (IL). We have varied the mole fractions (x) of IL from 0.0001 to 1 and investigated its memristive properties. The bipolar resistive switching and frequency-dependent limiting linear characteristics are clearly observed in developed IL memristive devices. Furthermore, analog memory property indicates that the IL memristive device is a potential candidate to develop electronic synapse devices for neuromorphic computing application. It is observed that the 0.010-mol fraction-based memristive device shows good resistive switching, good memory window (ratio of HRS/LRS) (~ 36), and uniform endurance. In order to cross-check our approach, we have developed 1-ethyl-3-methylimidazolium bromide [Emim][Br] IL devices (x = 0.0001 to 1) and studied its memristive properties. Interestingly, [Emim][Br] IL devices also show the memristive-like properties similar to [Bmim][Br] IL memristive devices. The results of both IL-based devices indicate that the two-terminal structure with IL as an active element could be a possible solution to develop two-terminal discrete memristive devices.

ᅟ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83. https://doi.org/10.1038/nature06932

    Article  CAS  PubMed  Google Scholar 

  2. Kavehei O, Iqbal A, Kim YS, Eshraghian K, Al-Sarawi SF, Abbott D (2010) The fourth element: characteristics, modelling and electromagnetic theory of the memristor. Proc R Soc A Math Phys Eng Sci 466:2175–2202. https://doi.org/10.1098/rspa.2009.0553

    Article  Google Scholar 

  3. Kim KH, Gaba S, Wheeler D, Cruz-Albrecht JM, Hussain T, Srinivasa N, Lu W (2011) A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett 12:389–395. https://doi.org/10.1021/nl203687n

    Article  CAS  PubMed  Google Scholar 

  4. Dongale TD, Mullani NB, Patil VB, Tikke RS, Pawar PS, Mohite SV, Teli AM, Bagade AA, Pawar KK, Khot KV, Shinde SS, Patil VL, Vanalkar SA, Moholkar AV, Bhosale PN, Patil PS, Kamat RK (2018) Mimicking the biological synapse functions of analog memory, synaptic weights, and forgetting with ZnO-based memristive devices. J Nanosci Nanotechnol 18:7758–7766. https://doi.org/10.1166/jnn.2018.15540

    Article  CAS  Google Scholar 

  5. Dongale TD, Desai ND, Khot KV, Volos CK, Bhosale PN, Kamat RK (2018) An electronic synapse device based on TiO2 thin film memristor. J Nanoelectron Optoelectron 13:68–75. https://doi.org/10.1166/jno.2018.2297

    Article  CAS  Google Scholar 

  6. Hadis NSM, Manaf AA, Herman SH (2013) Trends of deposition and patterning techniques of TiO2 for memristor based bio-sensing applications. Microsyst Technol 19:1889–1896. https://doi.org/10.1007/s00542-013-1959-9

    Article  CAS  Google Scholar 

  7. Guckert L, Swartzlander EE (2017) MAD gates—memristor logic design using driver circuitry. IEEE Trans Circuits Syst Express Briefs 64:171–175. https://doi.org/10.1109/TCSII.2016.2551554

    Article  Google Scholar 

  8. Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves CE, Li Z (2018) Analogue signal and image processing with large memristor crossbars. Nat Electron 1:52–59. https://doi.org/10.1038/s41928-017-0002-z

    Article  Google Scholar 

  9. Chen M, Li M, Yu Q, Bao B, Xu Q, Wang J (2015) Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn 81:215–226. https://doi.org/10.1007/s11071-015-1983-7

    Article  Google Scholar 

  10. Gul F (2018) Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor. Ceram Int 44:11417–11423. https://doi.org/10.1016/j.ceramint.2018.03.198

    Article  CAS  Google Scholar 

  11. Yesil A, Gül F. and Babacan Y, (2017) Emulator Circuits and Resistive Switching Parameters of Memristor. In: James A (ed) Memristor and Memristive Neural Networks, 1st edn. IntechOpen, London, pp. 41-61. https://doi.org/10.5772/intechopen.71903

    Google Scholar 

  12. Volkov AG, Tucket C, Reedus J, Volkova MI, Markin VS, Chua L (2014) Memristors in plants. Plant Signal Behav 9:28152. https://doi.org/10.4161/psb.28152

    Article  CAS  PubMed  Google Scholar 

  13. Kosta SP, Kosta YP, Bhatele M, Dubey YM, Gaur A, Kosta S, Gupta J, Patel A, Patel B (2011) Human blood liquid memristor. Int J Med Eng Inf 3:16–29. https://doi.org/10.1504/IJMEI.2011.039073

    Article  Google Scholar 

  14. Dongale TD (2013) An elementary note on skin hydration measurement using memristive effect. Health Inf J 2:15–20. https://doi.org/10.5121/hiij.2013.2102

    Article  Google Scholar 

  15. Gurme ST, Dongale TD, Surwase SN, Kumbhar SD, More GM, Patil VL, Patil PS, Kamat RK, Jadhav JP (2018) An organic bipolar resistive switching memory device based on natural melanin synthesized from Aeromonas sp. SNS. Phys Status Solidi A 215:1800550. https://doi.org/10.1002/pssa.201800550

    Article  CAS  Google Scholar 

  16. Rananavare AP, Kadam SJ, Prabhu SV, Chavan SS, Anbhule PV, Dongale TD (2018) Organic non-volatile memory device based on cellulose fibers. Mater Lett 232:99–102. https://doi.org/10.1016/j.matlet.2018.08.091

    Article  CAS  Google Scholar 

  17. Sun B, Liang D, Li X, Chen P (2016) Nonvolatile bio-memristor fabricated with natural bio-materials from spider silk. J Mater Sci Mater Electron 27:3957–3962. https://doi.org/10.1007/s10854-015-4248-9

    Article  CAS  Google Scholar 

  18. Koo HJ, So JH, Dickey MD, Velev OD (2011) Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv Mater 23:3559–3564. https://doi.org/10.1002/adma.201101257

    Article  CAS  PubMed  Google Scholar 

  19. Sheng Q, Xie Y, Li J, Wang X, Xue J (2017) Transporting an ionic-liquid/water mixture in a conical nanochannel: a nanofluidic memristor. Chem Commun 53:6125–6127. https://doi.org/10.1039/C7CC01047H

    Article  CAS  Google Scholar 

  20. Sun G, Slouka Z, Chang HC (2015) Fluidic-based ion memristors and ionic latches. Small 11:5206–5213. https://doi.org/10.1002/smll.201501229

    Article  CAS  PubMed  Google Scholar 

  21. Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AICHE J 47:2384–2389. https://doi.org/10.1002/aic.690471102

    Article  CAS  Google Scholar 

  22. Marr PC, Marr AC (2016) Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem 18:105–128. https://doi.org/10.1039/C5GC02277K

    Article  Google Scholar 

  23. Bhunia P, Hwang E, Min M, Lee J, Seo S, Some S, Lee H (2012) A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid. Chem Commun 48:913–915. https://doi.org/10.1039/C1CC16225J

    Article  CAS  Google Scholar 

  24. Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y (2010) Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. J Am Chem Soc 132:6672–6678. https://doi.org/10.1021/ja909110s

    Article  CAS  PubMed  Google Scholar 

  25. Rajan K, Chiappone A, Perrone D, Bocchini S, Roppolo I, Bejtka K, Castellino M, Pirri CF, Ricciardi C, Chiolerio A (2016) Ionic liquid-enhanced soft resistive switching devices. RSC Adv 6:94128–94138. https://doi.org/10.1039/C6RA18668H

    Article  CAS  Google Scholar 

  26. Dagade DH, Madkar KR, Shinde SP, Barge SS (2013) Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K. J Phys Chem B 117:1031–1043. https://doi.org/10.1021/jp310924m

    Article  CAS  PubMed  Google Scholar 

  27. Dagade DH, Shinde SP, Madkar KR, Barge SS (2014) Density and sound speed study of hydration of 1-butyl-3-methylimidazolium based amino acid ionic liquids in aqueous solutions. J Chem Thermodyn 79:192–204. https://doi.org/10.1016/j.jct.2014.07.026

    Article  CAS  Google Scholar 

  28. Shinde SP, Dagade DH (2015) Osmotic and activity coefficients for binary aqueous solutions of 1-butyl-3-methylimidazolium based amino acid ionic liquids at 298.15 K and at 0.1 MPa. J Chem Eng Data 60:635–642. https://doi.org/10.1021/je500772z

    Article  CAS  Google Scholar 

  29. Shinde SP, Dagade DH (2018) Apparent and transfer molar volumes for aqueous solution containing polyethylene glycols and amino acid ionic liquids at 298.15 K. J Solut Chem 47:1060–1078. https://doi.org/10.1007/s10953-018-0780-6

    Article  CAS  Google Scholar 

  30. Dongle VS, Dongare AA, Mullani NB, Pawar PS, Patil PB, Heo J, Park TJ, Dongale TD (2018) Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method. J Mater Sci Mater Electron 29:18733–18741. https://doi.org/10.1007/s10854-018-9997-9

    Article  CAS  Google Scholar 

  31. Kamble GU, Shetake NP, Yadav SD, Teli AM, Patil DS, Pawar SA, Karanjkar MM, Patil PS, Shin JC, Orlowski MK, Kamat RK, Dongale TD (2018) Coexistence of filamentary and homogeneous resistive switching with memristive and meminductive memory effects in Al/MnO2/SS thin film metal–insulator–metal device. Int Nano Lett 8:263–275. https://doi.org/10.1002/adma.201001872

    Article  CAS  Google Scholar 

  32. Kosta SP, Dubey A, Gupta P, Nair P, Kosta S, Chaudhary JP, Patel B, Patel A, Vishwkarma A, Patel J, Mehta H (2013) First physical model of human tissue skin based memristors and their network. Int J Med Eng Inf 5:5–19. https://doi.org/10.1504/IJMEI.2013.051661

    Article  Google Scholar 

  33. Gale E, Adamatzky A, de Lacy Costello B (2015) Slime mould memristors. Bionanoscience 5:1–8. https://doi.org/10.1007/s12668-014-0156-3

    Article  Google Scholar 

  34. Hota MK, Bera MK, Kundu B, Kundu SC, Maiti CK (2012) A natural silk fibroin protein-based transparent bio-memristor. Adv Funct Mater 22:4493–4499. https://doi.org/10.1002/adfm.201200073

    Article  CAS  Google Scholar 

  35. Tan C, Liu Z, Huang W, Zhang H (2015) Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem Soc Rev 44:2615–2628. https://doi.org/10.1039/C4CS00399C

    Article  CAS  PubMed  Google Scholar 

  36. Joglekar YN, Wolf SJ (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30:661–675. https://doi.org/10.1088/0143-0807/30/4/001

    Article  CAS  Google Scholar 

  37. Dongale TD, Mohite SV, Bagade AA, Kamat RK, Rajpure KY (2017) Bio-mimicking the synaptic weights, analog memory, and forgetting effect using spray deposited WO3 memristor device. Microelectron Eng 183-184:12–18. https://doi.org/10.1016/j.mee.2017.10.003

    Article  CAS  Google Scholar 

  38. Kumar S, Strachan JP, Williams RS (2017) Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548:318–321. https://doi.org/10.1038/nature23307

    Article  CAS  PubMed  Google Scholar 

  39. Liu W, Zhao T, Zhang Y, Wang H, Yu M (2006) The physical properties of aqueous solutions of the ionic liquid [BMIM][BF4]. J Solut Chem 35:1337–1346. https://doi.org/10.1007/s10953-006-9064-7

    Article  CAS  Google Scholar 

  40. Dongale TD, Khot KV, Mohite SV, Desai NK, Shinde SS, Patil VL, Vanalkar SA, Moholkar AV, Rajpure KY, Bhosale PN, Patil PS, Gaikwad PK, Kamat RK (2017) Effect of write voltage and frequency on the reliability aspects of memristor-based RRAM. Int Nano Lett 7:209–216. https://doi.org/10.1007/s40089-017-0217-z

    Article  CAS  Google Scholar 

  41. Gül F (2019) Addressing the sneak-path problem in crossbar RRAM devices using memristor-based one Schottky diode-one resistor array. Results Phys 12:1091–1096. https://doi.org/10.1016/j.rinp.2018.12.092

    Article  Google Scholar 

  42. Gul F (2019) Circuit implementation of nano-scale TiO2 memristor using only metal-oxide-semiconductor (MOS) transistors. IEEE Electron Device Lett 40:643–646. https://doi.org/10.1109/LED.2019.2899889

    Article  CAS  Google Scholar 

  43. Babacan Y, Yesil A, Gul F (2018) The fabrication and MOSFET-only circuit implementation of semiconductor memristor. IEEE Trans Electron Devices 65:1625–1632. https://doi.org/10.1109/TED.2018.2808530

    Article  CAS  Google Scholar 

Download references

Funding

Dr. T. D. Dongale thank the Shivaji University, Kolhapur for financial assistance under the ‘Research Initiation Scheme’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sungjun Kim or Tukaram D. Dongale.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chougale, M.Y., Patil, S.R., Shinde, S.P. et al. Memristive switching in ionic liquid–based two-terminal discrete devices. Ionics 25, 5575–5583 (2019). https://doi.org/10.1007/s11581-019-03082-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03082-6

Keywords

Navigation