Skip to main content
Log in

Bionic iontronics based on nano-confined structures

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The Moore’s law in silicone-based electronics is reaching its limit and the energy efficiency of the most sophisticated electronics to mimic the iontronic logic circuit in single-celled organisms is still inferior to their natural counterpart. Unlike electronics, iontronics is widely present in nature, and provides the fundamentals for many life activities through the transmission and conversion of information and energy via ions. Moreover, as nanotechnology and fabrication processes continue to advance, highly efficient iontronics could be enabled by creation of asymmetry from nano-confined unipolar ion transport through various nanohierarchical structures of materials. The introduction of bionic design and nanostructures has made it possible for ions to demonstrate numerous anomalous behaviours and entirely new mechanisms, which are governed by complex interfacial interactions. In this review, we discuss the origins, development, mechanism, and applications of bionic iontronics and analyze the unique benefits as well as the practicality of iontronics from a variety of perspectives. Iontronics, as an emerging field of research with innumerable challenges and opportunities for exploring the theory and applications of ions as transport carriers, promises to provide new insights in many subjects covering energy and sensing, etc., and establishes a new paradigm in investigating the ionic-electric signal transduction interface for futuristic iontronic logic circuit and neuromorphic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. F.; Duan, L. F.; Zhang, Y. Z.; Wang, J.; Geng, H. J.; Zhang, Q. Advances in conceptual electronic nanodevices based on 0D and 1D nanomaterials. Nano-Micro Lett. 2014, 6, 1–19.

    Article  Google Scholar 

  2. Sarpeshkar, R. Analog versus digital: Extrapolating from electronics to neurobiology. Neural Comput. 1998, 10, 1601–1638.

    Article  CAS  Google Scholar 

  3. Chau, R.; Doyle, B.; Datta, S.; Kavalieros, J.; Zhang, K. Integrated nanoelectronics for the future. Nat. Mater. 2007, 6, 810–812.

    Article  CAS  Google Scholar 

  4. Chun, H.; Chung, T. D. Iontronics. Annu. Rev. Anal. Chem. 2015, 8, 441–462.

    Article  CAS  Google Scholar 

  5. Goldhaber-Gordon, D.; Montemerlo, M. S.; Love, J. C.; Opiteck, G. J.; Ellenbogen, J. C. Overview of nanoelectronic devices. Proc. IEEE 1997, 85, 521–540.

    Article  CAS  Google Scholar 

  6. Cohen-Cory, S. The developing synapse: Construction and modulation of synaptic structures and circuits. Science 2002, 298, 770–776.

    Article  CAS  Google Scholar 

  7. Onoda, M. Bioinspired electrochemical devices toward organic iontronics. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 320–334.

    Article  CAS  Google Scholar 

  8. Hou, Y. Q.; Hou, X. Bioinspired nanofluidic iontronics: Electrolytes in planar nanochannels are predicted to function as nanofluidic memristors. Science 2021, 373, 628–629.

    Article  CAS  Google Scholar 

  9. Li, T. M.; Xiao, K. Solid-state iontronic devices: Mechanisms and applications. Adv. Mater. Technol. 2022, 7, 2200205.

    Article  Google Scholar 

  10. Onoda, M. Ionic carriers in organic electronics—Lean of the ion. In Proceedings of 2014 International Symposium on Electrical Insulating Materials; Niigata, Japan, 2014; pp 515–518.

  11. Leger, J.; Berggren, M.; Carter, S. A. Iontronics: Ionic Carriers in Organic Electronic Materials and Devices; CRC Press: Boca Raton, 2011.

  12. Ouyang, J. Y. Recent advances of intrinsically conductive polymers. Acta Phys. -Chim. Sin. 2018, 34, 1211–1220.

    Article  CAS  Google Scholar 

  13. Zhang, P. P.; Guo, W. B.; Guo, Z. H.; Ma, Y.; Gao, L.; Cong, Z. F.; Zhao, X. J.; Qiao, L. J.; Pu, X.; Wang, Z. L. Dynamically crosslinked dry ion-conducting elastomers for soft iontronics. Adv. Mater. 2021, 33, 2101396.

    Article  CAS  Google Scholar 

  14. Zhang, J. R.; Liu, W. C.; Dai, J. Q.; Xiao, K. Nanoionics from biological to artificial systems: An alternative beyond nanoelectronics. Adv. Sci. 2022, 9, 2200534.

    Article  CAS  Google Scholar 

  15. Yu, J. R.; Wang, Y. F.; Qin, S. S.; Gao, G. Y.; Xu, C.; Lin Wang, Z.; Sun, Q. J. Bioinspired interactive neuromorphic devices. Mater. Today 2022, 60, 158–182.

    Article  CAS  Google Scholar 

  16. Lee, Y.; Park, J.; Choe, A.; Cho, S.; Kim, J.; Ko, H. Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 2020, 30, 1904523.

    Article  CAS  Google Scholar 

  17. Yang, C. H.; Suo, Z. G. Hydrogel ionotronics. Nat. Rev. Mater. 2018, 3, 125–142.

    Article  CAS  Google Scholar 

  18. Zhang, A. Q.; Lieber, C. M. Nano-bioelectronics. Chem. Rev. 2016, 116, 215–257.

    Article  CAS  Google Scholar 

  19. Wan, C. J.; Xiao, K.; Angelin, A.; Antonietti, M.; Chen, X. D. The rise of bioinspired ionotronics. Adv. Intell. Syst. 2019, 1, 1900073.

    Article  Google Scholar 

  20. Raidongia, K.; Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2012, 134, 16528–16531.

    Article  CAS  Google Scholar 

  21. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

    Article  CAS  Google Scholar 

  22. Zhou, Y.; Liao, X. W.; Han, J.; Chen, T. T.; Wang, C. Ionic current rectification in asymmetric nanofluidic devices. Chin. Chem. Lett. 2020, 31, 2414–2422.

    Article  CAS  Google Scholar 

  23. Koltonow, A. R.; Huang, J. X. Two-dimensional nanofluidics: Restacked exfoliated sheets create interconnected nanofluidic channels for ion transport. Science 2016, 351, 1395–1396.

    Article  CAS  Google Scholar 

  24. Zhong, J. J.; Alibakhshi, M. A.; Xie, Q.; Riordon, J.; Xu, Y.; Duan, C. H.; Sinton, D. Exploring anomalous fluid behavior at the nanoscale: Direct visualization and quantification via nanofluidic devices. Acc. Chem. Res. 2020, 53, 347–357.

    Article  CAS  Google Scholar 

  25. Yang, L.; Yang, F. Y.; Liu, X.; Li, K.; Zhou, Y. N.; Wang, Y. J.; Yu, T. H.; Zhong, M. J.; Xu, X. B.; Zhang, L. J. et al. A moisture-enabled fully printable power source inspired by electric eels. Proc. Natl. Acad. Sci. USA 2021, 118, e2023164118.

    Article  CAS  Google Scholar 

  26. Schroeder, T. B. H.; Guha, A.; Lamoureux, A.; VanRenterghem, G.; Sept, D.; Shtein, M.; Yang, J.; Mayer, M. An electric-eel-inspired soft power source from stacked hydrogels. Nature 2017, 552, 214–218.

    Article  CAS  Google Scholar 

  27. Yang, J. L.; Tu, B.; Zhang, G. J.; Liu, P. C.; Hu, K.; Wang, J. R.; Yan, Z.; Huang, Z. W.; Fang, M. N.; Hou, J. J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022, 17, 622–628.

    Article  CAS  Google Scholar 

  28. Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455–458.

    Article  CAS  Google Scholar 

  29. Xin, W. W.; Zhang, Z.; Huang, X. D.; Hu, Y. H.; Zhou, T.; Zhu, C. C.; Kong, X. Y.; Jiang, L.; Wen, L. P. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 2019, 10, 3876.

    Article  Google Scholar 

  30. Yu, L. J.; Wang, M.; Li, X. P.; Hou, X. Thermally responsive ionic transport system reinforced by aligned functional carbon nanotubes backbone. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.107785.

  31. Xiao, K.; Xie, G. H.; Li, P.; Liu, Q.; Hou, G. L.; Zhang, Z.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. A biomimetic multi-stimuli-response ionic gate using a hydroxypyrene derivation-functionalized asymmetric single nanochannel. Adv. Mater. 2014, 26, 6560–6565.

    Article  CAS  Google Scholar 

  32. Hou, G. L.; Wang, D. Y.; Xiao, K.; Zhang, H. C.; Zheng, S.; Li, P.; Tian, Y.; Jiang, L. Magnetic gated biomimetic artificial nanochannels for controllable ion transportation inspired by homing pigeon. Small 2018, 14, 1703369.

    Article  Google Scholar 

  33. Xiao, K.; Wu, K.; Chen, L.; Kong, X. Y.; Zhang, Y. Q.; Wen, L. P.; Jiang, L. Biomimetic peptide-gated nanoporous membrane for on-demand molecule transport. Angew. Chem., Int. Ed. 2018, 57, 151–155.

    Article  CAS  Google Scholar 

  34. Wang, M.; Meng, H. Q.; Wang, D.; Yin, Y. J.; Stroeve, P.; Zhang, Y. M.; Sheng, Z. Z.; Chen, B. Y.; Zhan, K.; Hou, X. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv. Mater. 2019, 31, 1805130.

    Article  Google Scholar 

  35. Nakanishi, H.; Walker, D. A.; Bishop, K. J. M.; Wesson, P. J.; Yan, Y.; Soh, S.; Swaminathan, S.; Grzybowski, B. A. Dynamic internal gradients control and direct electric currents within nanostructured materials. Nat. Nanotechnol. 2011, 6, 740–746.

    Article  CAS  Google Scholar 

  36. Siwy, Z. S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735–746.

    Article  CAS  Google Scholar 

  37. Chen, L.; Shi, G. S.; Shen, J.; Peng, B. Q.; Zhang, B. W.; Wang, Y. Z.; Bian, F. G.; Wang, J. J.; Li, D. Y.; Qian, Z. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017, 550, 380–383.

    Article  CAS  Google Scholar 

  38. Sheng, F. M.; Wu, B.; Li, X. Y.; Xu, T. T.; Shehzad, M. A.; Wang, X. X.; Ge, L.; Wang, H. T.; Xu, T. W. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv. Mater. 2021, 33, 2104404.

    Article  CAS  Google Scholar 

  39. Wen, Q.; Yan, D. X.; Liu, F.; Wang, M.; Ling, Y.; Wang, P. F.; Kluth, P.; Schauries, D.; Trautmann, C.; Apel, P. et al. Highly selective ionic transport through subnanometer pores in polymer films. Adv. Funct. Mater. 2016, 26, 5796–5803.

    Article  CAS  Google Scholar 

  40. Richards, L. A.; Schäfer, A. I.; Richards, B. S.; Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 2012, 8, 1701–1709.

    Article  CAS  Google Scholar 

  41. Xiao, J.; Zhan, H. L.; Wang, X.; Xu, Z. Q.; Xiong, Z. Y.; Zhang, K.; Simon, G. P.; Liu, J. Z.; Li, D. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 2020, 15, 683–689.

    Article  CAS  Google Scholar 

  42. Feng, G.; Cummings, P. T. Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J. Phys. Chem. Lett. 2011, 2, 2859–2864.

    Article  CAS  Google Scholar 

  43. Yang, X. X.; Han, J.; Yu, J. R.; Chen, Y. H.; Zhang, H.; Ding, M.; Jia, C. K.; Sun, J.; Sun, Q. J.; Wang, Z. L. Versatile triboiontronic transistor via proton conductor. ACS Nano 2020, 14, 8668–8677.

    Article  CAS  Google Scholar 

  44. Yu, J. R.; Qin, S. S.; Zhang, H.; Wei, Y. C.; Zhu, X. X.; Yang, Y.; Sun, Q. J. Fiber-shaped triboiontronic electrochemical transistor. Research 2021, 2021, 9840918.

    Article  CAS  Google Scholar 

  45. Gao, G. Y.; Yu, J. R.; Yang, X. X.; Pang, Y. K.; Zhao, J.; Pan, C. F.; Sun, Q. J.; Wang, Z. L. Triboiontronic transistor of MoS2. Adv. Mater. 2019, 31, 1806905.

    Article  Google Scholar 

  46. Tan, F. X.; Xiong, Y.; Yu, J. R.; Wang, Y. F.; Li, Y. H.; Wei, Y. C.; Sun, J.; Xie, X. Y.; Sun, Q. J.; Wang, Z. L. Triboelectric potential tuned dual-gate IGZO transistor for versatile sensory device. Nano Energy 2021, 90, 106617.

    Article  CAS  Google Scholar 

  47. Han, S. H.; Kwon, S. R.; Baek, S.; Chung, T. D. Ionic circuits powered by reverse electrodialysis for an ultimate iontronic system. Sci. Rep. 2017, 7, 14068.

    Article  Google Scholar 

  48. Han, S. H.; Kim, S. I.; Lee, H. R.; Lim, S. M.; Yeon, S. Y.; Oh, M. A.; Lee, S.; Sun, J. Y.; Joo, Y. C.; Chung, T. D. Hydrogel-based iontronics on a polydimethylsiloxane microchip. ACS Appl. Mater. Interfaces 2021, 13, 6606–6614.

    Article  CAS  Google Scholar 

  49. Yao, Y.; Huang, W.; Chen, J. H.; Wang, G.; Chen, H. M.; Zhuang, X. M.; Ying, Y. B.; Ping, J. F.; Marks, T. J.; Facchetti, A. Flexible complementary circuits operating at sub-0.5 V via hybrid organic-inorganic electrolyte-gated transistors. Proc. Natl. Acad. Sci. USA 2021, 118, e2111790118.

    Article  CAS  Google Scholar 

  50. Stein, D.; Kruithof, M.; Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93, 035901.

    Article  Google Scholar 

  51. Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.

    Article  CAS  Google Scholar 

  52. Gogotsi, Y. Moving ions confined between graphene sheets. Nat. Nanotechnol. 2018, 13, 625–627.

    Article  CAS  Google Scholar 

  53. Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019, 3, 2364–2380.

    Article  CAS  Google Scholar 

  54. Wang, M.; Hou, X. Building artificial aligned nanochannels for highly efficient ion transport. Joule 2023, 7, 251–253.

    Article  Google Scholar 

  55. Lin, S. Q.; Xu, L.; Chi Wang, A.; Wang, Z. L. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat. Commun. 2020, 11, 399.

    Article  CAS  Google Scholar 

  56. Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Contact electrification at the liquid-solid interface. Chem. Rev. 2022, 122, 5209–5232.

    Article  CAS  Google Scholar 

  57. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

    Article  CAS  Google Scholar 

  58. Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater. 2019, 18, 510–517.

    Article  CAS  Google Scholar 

  59. Zhou, Y. H.; Jiang, L. Bioinspired nanoporous membrane for salinity gradient energy harvesting. Joule 2020, 4, 2244–2248.

    Article  Google Scholar 

  60. Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.

    Article  CAS  Google Scholar 

  61. Keene, S. T.; Lubrano, C.; Kazemzadeh, S.; Melianas, A.; Tuchman, Y.; Polino, G.; Scognamiglio, P.; Cinà, L.; Salleo, A.; van de Burgt, Y. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 2020, 19, 969–973.

    Article  CAS  Google Scholar 

  62. Zhao, F.; Meng, H.; Yan, L.; Wang, B.; Zhao, Y. L. Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Sci. Bull. 2015, 60, 3–20.

    Article  CAS  Google Scholar 

  63. Gadsby, D. C. Ion channels versus ion pumps: The principal difference, in principle. Nat. Rev. Mol. Cell Biol. 2009, 10, 344–352.

    Article  CAS  Google Scholar 

  64. Glancy, B.; Balaban, R. S. Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 2012, 51, 2959–2973.

    Article  CAS  Google Scholar 

  65. McEvoy, E.; Han, Y. L.; Guo, M.; Shenoy, V. B. Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids. Nat. Commun. 2020, 11, 6148.

    Article  CAS  Google Scholar 

  66. Giorgi, C.; Marchi, S.; Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 2018, 19, 713–730.

    Article  CAS  Google Scholar 

  67. Shen, Y. G.; Wang, X.; Lei, J. M.; Wang, S. L.; Hou, Y. Q.; Hou, X. Catalytic confinement effects in nanochannels: From biological synthesis to chemical engineering. Nanoscale Adv. 2022, 4, 1517–1526.

    Article  CAS  Google Scholar 

  68. Devine, M. J.; Kittler, J. T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018, 19, 63–80.

    Article  CAS  Google Scholar 

  69. Abe, K.; Irie, K.; Nakanishi, H.; Suzuki, H.; Fujiyoshi, Y. Crystal structures of the gastric proton pump. Nature 2018, 556, 214–218.

    Article  CAS  Google Scholar 

  70. Hill, R. Z.; Loud, M. C.; Dubin, A. E.; Peet, B.; Patapoutian, A. PIEZO1 transduces mechanical itch in mice. Nature 2022, 607, 104–110.

    Article  CAS  Google Scholar 

  71. Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A. L.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77.

    Article  CAS  Google Scholar 

  72. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191, 144–148.

    Article  CAS  Google Scholar 

  73. Elston, T.; Wang, H. Y.; Oster, G. Energy transduction in ATP synthase. Nature 1998, 391, 510–513.

    Article  CAS  Google Scholar 

  74. Gouaux, E.; MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 2005, 310, 1461–1465.

    Article  CAS  Google Scholar 

  75. Burgoyne, R. D. Neuronal calcium sensor proteins: Generating diversity in neuronal Ca2+ signalling. Nat. Rev. Neurosci. 2007, 8, 182–193.

    Article  CAS  Google Scholar 

  76. James, P.; Inui, M.; Tada, M.; Chiesi, M.; Carafoli, E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 1989, 342, 90–92.

    Article  CAS  Google Scholar 

  77. Liu, Q.; Xiao, K.; Wen, L. P.; Lu, H.; Liu, Y. H.; Kong, X. Y.; Xie, G. H.; Zhang, Z.; Bo, Z. S.; Jiang, L. Engineered ionic gates for ion conduction based on sodium and potassium activated nanochannels. J. Am. Chem. Soc. 2015, 137, 11976–11983.

    Article  CAS  Google Scholar 

  78. Wu, K.; Xiao, K.; Chen, L.; Zhou, R.; Niu, B.; Zhang, Y. Q.; Wen, L. P. Biomimetic voltage-gated ultrasensitive potassium-activated nanofluidic based on a solid-state nanochannel. Langmuir 2017, 33, 8463–8467.

    Article  CAS  Google Scholar 

  79. Xiao, K.; Wan, C. J.; Jiang, L.; Chen, X. D.; Antonietti, M. Bioinspired ionic sensory systems: The successor of electronics. Adv. Mater. 2020, 32, 2000218.

    Article  CAS  Google Scholar 

  80. Zhan, K.; Li, Z. Y.; Chen, J.; Hou, Y. Q.; Zhang, J.; Sun, R. Q.; Bu, Z. X.; Wang, L. Y.; Wang, M.; Chen, X. Y. et al. Tannic acid modified single nanopore with multivalent metal ions recognition and ultra-trace level detection. Nano Today 2020, 33, 100868.

    Article  CAS  Google Scholar 

  81. Xue, Y. H.; Xia, Y.; Yang, S.; Alsaid, Y.; Fong, K. Y.; Wang, Y.; Zhang, X. Atomic-scale ion transistor with ultrahigh diffusivity. Science 2021, 372, 501–503.

    Article  CAS  Google Scholar 

  82. Wang, M.; Hou, Y. Q.; Yu, L. J.; Hou, X. Anomalies of ionic/molecular transport in nano and sub-nano confinement. Nano Lett. 2020, 20, 6937–6946.

    Article  CAS  Google Scholar 

  83. Daiguji, H. Ion transport in nanofluidic channels. Chem. Soc. Rev. 2010, 39, 901–911.

    Article  CAS  Google Scholar 

  84. Zhan, H. L.; Xiong, Z. Y.; Cheng, C.; Liang, Q. H.; Liu, J. Z.; Li, D. Solvation-involved nanoionics: New opportunities from 2D nanomaterial laminar membranes. Adv. Mater. 2020, 32, 1904562.

    Article  CAS  Google Scholar 

  85. Feng, J. D.; Liu, K.; Graf, M.; Dumcenco, D.; Kis, A.; Di Ventra, M.; Radenovic, A. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 2016, 15, 850–855.

    Article  CAS  Google Scholar 

  86. Zhang, Z.; Kong, X. Y.; Xiao, K.; Xie, G. H.; Liu, Q.; Tian, Y.; Zhang, H. C.; Ma, J.; Wen, L. P.; Jiang, L. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Adv. Mater. 2016, 28, 144–150.

    Article  CAS  Google Scholar 

  87. Zhang, H. C.; Hou, X.; Zeng, L.; Yang, F.; Li, L.; Yan, D. D.; Tian, Y.; Jiang, L. Bioinspired artificial single ion pump. J. Am. Chem. Soc. 2013, 135, 16102–16110.

    Article  CAS  Google Scholar 

  88. Xie, G. H.; Li, P.; Zhao, Z. J.; Zhu, Z. P.; Kong, X. Y.; Zhang, Z.; Xiao, K.; Wen, L. P.; Jiang, L. Light- and electric-field-controlled wetting behavior in nanochannels for regulating nanoconfined mass transport. J. Am. Chem. Soc. 2018, 140, 4552–4559.

    Article  CAS  Google Scholar 

  89. Qian, T. Y.; Zhang, H. C.; Li, X. Y.; Hou, J.; Zhao, C.; Gu, Q. F.; Wang, H. T. Efficient gating of ion transport in three-dimensional metal-organic framework sub-nanochannels with confined light-responsive azobenzene molecules. Angew. Chem., Int. Ed. 2020, 59, 13051–13056.

    Article  CAS  Google Scholar 

  90. Xiao, K.; Zhou, Y. H.; Kong, X. Y.; Xie, G. H.; Li, P.; Zhang, Z.; Wen, L. P.; Jiang, L. Electrostatic-charge- and electric-field-induced smart gating for water transportation. ACS Nano 2016, 10, 9703–9709.

    Article  CAS  Google Scholar 

  91. Chen, K. X.; Yao, L. N.; Su, B. Bionic thermoelectric response with nanochannels. J. Am. Chem. Soc. 2019, 141, 8608–8615.

    Article  CAS  Google Scholar 

  92. Li, P.; Kong, X. Y.; Xie, G. H.; Xiao, K.; Zhang, Z.; Wen, L. P.; Jiang, L. Adenosine-activated nanochannels inspired by G-protein-coupled receptors. Small 2016, 12, 1854–1858.

    Article  CAS  Google Scholar 

  93. Liu, Q.; Xiao, K.; Wen, L. P.; Dong, Y.; Xie, G. H.; Zhang, Z.; Bo, Z. S.; Jiang, L. A fluoride-driven ionic gate based on a 4-aminophenylboronic acid-functionalized asymmetric single nanochannel. ACS Nano 2014, 8, 12292–12299.

    Article  CAS  Google Scholar 

  94. Mei, T. T.; Zhang, H. J.; Xiao, K. Bioinspired artificial ion pumps. ACS Nano 2022, 16, 13323–13338.

    Article  CAS  Google Scholar 

  95. Zhang, Z.; Kong, X. Y.; Xiao, K.; Liu, Q.; Xie, G. H.; Li, P.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. Engineered asymmetric heterogeneous membrane: A concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 2015, 137, 14765–14772.

    Article  CAS  Google Scholar 

  96. Siwy, Z.; Fuliński, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 2002, 89, 198103.

    Article  CAS  Google Scholar 

  97. Zhang, Q. Q.; Liu, Z. Y.; Wang, K. F.; Zhai, J. Organic/inorganic hybrid nanochannels based on polypyrrole-embedded alumina nanopore arrays: pH- and light-modulated ion transport. Adv. Funct. Mater. 2015, 25, 2091–2098.

    Article  CAS  Google Scholar 

  98. Hille, B.; Armstrong, C. M.; MacKinnon, R. Ion channels: From idea to reality. Nat. Med. 1999, 5, 1105–1109.

    Article  CAS  Google Scholar 

  99. Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546–550.

    Article  CAS  Google Scholar 

  100. Chen, L.; Tu, B.; Lu, X. B.; Li, F.; Jiang, L.; Antonietti, M.; Xiao, K. Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture. Nat. Commun. 2021, 12, 4650.

    Article  CAS  Google Scholar 

  101. Li, X. Y.; Zhang, H. C.; Yu, H.; Xia, J.; Zhu, Y. B.; Wu, H. A.; Hou, J.; Lu, J.; Ou, R. W.; Easton, C. D. et al. Unidirectional and selective proton transport in artificial heterostructured nanochannels with nano-to-subnano confined water clusters. Adv. Mater. 2020, 32, 2001777.

    Article  CAS  Google Scholar 

  102. Sumikama, T.; Saito, S.; Ohmine, I. Mechanism of ion permeation in a model channel: Free energy surface and dynamics of K+ ion transport in an anion-doped carbon nanotube. J. Phys. Chem. B 2006, 110, 20671–20677.

    Article  CAS  Google Scholar 

  103. Segalini, J.; Iwama, E.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Steric effects in adsorption of ions from mixed electrolytes into microporous carbon. Electrochem. Commun. 2012, 15, 63–65.

    Article  CAS  Google Scholar 

  104. Huang, J. S.; Sumpter, B. G.; Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem., Int. Ed. 2008, 47, 520–524.

    Article  CAS  Google Scholar 

  105. Huang, J. S.; Sumpter, B. G.; Meunier, V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem.–Eur. J. 2008, 14, 6614–6626.

    Article  CAS  Google Scholar 

  106. Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem., Int. Ed. 2008, 47, 3392–3395.

    Article  CAS  Google Scholar 

  107. Kondrat, S.; Kornyshev, A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys.: Condens. Matter 2011, 23, 022201.

    CAS  Google Scholar 

  108. Futamura, R.; Iiyama, T.; Takasaki, Y.; Gogotsi, Y.; Biggs, M. J.; Salanne, M.; Ségalini, J.; Simon, P.; Kaneko, K. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 2017, 16, 1225–1232.

    Article  CAS  Google Scholar 

  109. Jiang, D. E.; Jin, Z. H.; Wu, J. Z. Oscillation of capacitance inside nanopores. Nano Lett. 2011, 11, 5373–5377.

    Article  CAS  Google Scholar 

  110. Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

    Article  CAS  Google Scholar 

  111. Macha, M.; Marion, S.; Nandigana, V. V. R.; Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 2019, 4, 588–605.

    Article  CAS  Google Scholar 

  112. Ji, J. Z.; Kang, Q.; Zhou, Y.; Feng, Y. P.; Chen, X.; Yuan, J. Y.; Guo, W.; Wei, Y.; Jiang, L. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 2017, 27, 1603623.

    Article  Google Scholar 

  113. Cheng, C.; Jiang, G. P.; Garvey, C. J.; Wang, Y. Y.; Simon, G. P.; Liu, J. Z.; Li, D. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2016, 2, e1501272.

    Article  Google Scholar 

  114. Kim, S.; Choi, S.; Lee, H. G.; Jin, D. N.; Kim, G.; Kim, T.; Lee, J. S.; Shim, W. Neuromorphic van der Waals crystals for substantial energy generation. Nat. Commun. 2021, 12, 47.

    Article  CAS  Google Scholar 

  115. Zhen, Z.; Li, Z. C.; Zhao, X. L.; Zhong, Y. J.; Huang, M. R.; Zhu, H. W. A non-covalent cation-π interaction-based humidity-driven electric nanogenerator prepared with salt decorated wrinkled graphene. Nano Energy 2019, 62, 189–196.

    Article  CAS  Google Scholar 

  116. Guo, W.; Cheng, C.; Wu, Y. Z.; Jiang, Y. A.; Gao, J.; Li, D.; Jiang, L. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 2013, 25, 6064–6068.

    Article  CAS  Google Scholar 

  117. Wei, D.; Yang, F. Y.; Jiang, Z. H.; Wang, Z. L. Flexible iontronics based on 2D nanofluidic material. Nat. Commun. 2022, 13, 4965.

    Article  CAS  Google Scholar 

  118. Zhang, Z.; Yang, S.; Zhang, P. P.; Zhang, J.; Chen, G. B.; Feng, X. L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10, 2920.

    Article  Google Scholar 

  119. Ding, L.; Zheng, M. T.; Xiao, D.; Zhao, Z. H.; Xue, J.; Zhang, S. Q.; Caro, J.; Wang, H. H. Bioinspired Ti3C2Tx MXene-based ionic diode membrane for high-efficient osmotic energy conversion. Angew. Chem., Int. Ed. 2022, 61, e202206152.

    Article  CAS  Google Scholar 

  120. Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197–200.

    Article  CAS  Google Scholar 

  121. Jia, P.; Wang, L. L.; Zhang, Y. H.; Yang, Y. T.; Jin, X. Y.; Zhou, M.; Quan, D.; Jia, M. J.; Cao, L. X.; Long, R. et al. Harnessing ionic power from equilibrium electrolyte solution via photoinduced active ion transport through van-der-Waals-like heterostructures. Adv. Mater. 2021, 33, 2007529.

    Article  CAS  Google Scholar 

  122. Chen, C.; Liu, D.; He, L.; Qin, S.; Wang, J. M.; Razal, J. M.; Kotov, N. A.; Lei, W. W. Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 2020, 4, 247–261.

    Article  CAS  Google Scholar 

  123. Zhang, M. C.; Guan, K. C.; Ji, Y. F.; Liu, G. P.; Jin, W. Q.; Xu, N. P. Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 2019, 10, 1253.

    Article  Google Scholar 

  124. Graf, M.; Lihter, M.; Unuchek, D.; Sarathy, A.; Leburton, J. P.; Kis, A.; Radenovic, A. Light-enhanced blue energy generation using MoS2 nanopores. Joule 2019, 3, 1549–1564.

    Article  CAS  Google Scholar 

  125. Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R. Conical-nanotube ion-current rectifiers: The role of surface charge. J. Am. Chem. Soc. 2004, 126, 10850–10851.

    Article  CAS  Google Scholar 

  126. Hong, S.; El-Demellawi, J. K.; Lei, Y.; Liu, Z.; Marzooqi, F. A.; Arafat, H. A.; Alshareef, H. N. Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano 2022, 16, 792–800.

    Article  CAS  Google Scholar 

  127. Zhang, Z.; He, L.; Zhu, C. C.; Qian, Y. C.; Wen, L. P.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875.

    Article  Google Scholar 

  128. Zhang, Z.; Wen, L. P.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622–639.

    Article  CAS  Google Scholar 

  129. Zhang, H.; Yu, J. R.; Yang, X. X.; Gao, G. Y.; Qin, S. S.; Sun, J.; Ding, M.; Jia, C. K.; Sun, Q. J.; Wang, Z. L. Ion gel capacitively coupled tribotronic gating for multiparameter distance sensing. ACS Nano 2020, 14, 3461–3468.

    Article  CAS  Google Scholar 

  130. Gao, G. Y.; Wan, B. S.; Liu, X. Q.; Sun, Q. J.; Yang, X. N.; Wang, L. F.; Pan, C. F.; Wang, Z. L. Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus. Adv. Mater. 2018, 30, 1705088.

    Article  Google Scholar 

  131. Sangwan, V. K.; Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517–528.

    Article  CAS  Google Scholar 

  132. Yu, J. R.; Gao, G. Y.; Huang, J. R.; Yang, X. X.; Han, J.; Zhang, H.; Chen, Y. H.; Zhao, C. L.; Sun, Q. J.; Wang, Z. L. Contact-electrification-activated artificial afferents at femtojoule energy. Nat. Commun. 2021, 12, 1581.

    Article  CAS  Google Scholar 

  133. Yu, J. R.; Yang, X. X.; Gao, G. Y.; Xiong, Y.; Wang, Y. F.; Han, J.; Chen, Y. H.; Zhang, H.; Sun, Q. J.; Wang, Z. L. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 2021, 7, eabd9117.

    Article  CAS  Google Scholar 

  134. Arbring Sjöström, T.; Berggren, M.; Gabrielsson, E. O.; Janson, P.; Poxson, D. J.; Seitanidou, M.; Simon, D. T. A decade of iontronic delivery devices. Adv. Mater. Technol. 2018, 3, 1700360.

    Article  Google Scholar 

  135. Zhang, Z.; Li, P.; Kong, X. Y.; Xie, G. H.; Qian, Y. C.; Wang, Z. Q.; Tian, Y.; Wen, L. P.; Jiang, L. Bioinspired heterogeneous ion pump membranes: Unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution. J. Am. Chem. Soc. 2018, 140, 1083–1090.

    Article  CAS  Google Scholar 

  136. Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.

    Article  CAS  Google Scholar 

  137. Song, B.; Jiang, L. A four-dimensional model for the information storage/output model of life. Nano Res. 2023, 16, 2630–2634.

    Article  Google Scholar 

  138. Song, Y. A.; Melik, R.; Rabie, A. N.; Ibrahim, A. M. S.; Moses, D.; Tan, A.; Han, J.; Lin, S. J. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes. Nat. Mater. 2011, 10, 980–986.

    Article  CAS  Google Scholar 

  139. Simon, D. T.; Kurup, S.; Larsson, K. C.; Hori, R.; Tybrandt, K.; Goiny, M.; Jager, E. W. H.; Berggren, M.; Canlon, B.; Richter-Dahlfors, A. Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat. Mater. 2009, 8, 742–746.

    Article  CAS  Google Scholar 

  140. Isaksson, J.; Kjäll, P.; Nilsson, D.; Robinson, N.; Berggren, M.; Richter-Dahlfors, A. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 2007, 6, 673–679.

    Article  CAS  Google Scholar 

  141. Williamson, A.; Rivnay, J.; Kergoat, L.; Jonsson, A.; Inal, S.; Uguz, I.; Ferro, M.; Ivanov, A.; Sjöström, T. A.; Simon, D. T. et al. Controlling epileptiform activity with organic electronic ion pumps. Adv. Mater. 2015, 27, 3138–3144.

    Article  CAS  Google Scholar 

  142. Dobashi, Y.; Yao, D.; Petel, Y.; Nguyen, T. N.; Sarwar, M. S.; Thabet, Y.; Ng, C. L. W.; Scabeni Glitz, E.; Nguyen, G. T. M.; Plesse, C. et al. Piezoionic mechanoreceptors: Force-induced current generation in hydrogels. Science 2022, 376, 502–507.

    Article  CAS  Google Scholar 

  143. Pérez-Mitta, G.; Albesa, A. G.; Trautmann, C.; Toimil-Molares, M. E.; Azzaroni, O. Bioinspired integrated nanosystems based on solid-state nanopores: “Iontronic” transduction of biological, chemical and physical stimuli. Chem. Sci. 2017, 8, 890–913.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from Beijing Institute of Nanoenergy and Nanosystems.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Wei or Zhonglin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, H., Wei, D. & Wang, Z. Bionic iontronics based on nano-confined structures. Nano Res. 16, 11718–11730 (2023). https://doi.org/10.1007/s12274-023-5705-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5705-z

Keywords

Navigation