Skip to main content
Log in

Mo doping provokes two electron reaction in MnO2 with ultrahigh capacity for aqueous zinc ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rechargeable aqueous zinc ion batteries (AZIBs) based on manganese dioxide (MnO2) have received much attention for large-scale energy storage applications, however, their energy density is mainly limited by the one-electron reaction of Mn4+/Mn3+ redox. Herein, Mo doped δ-MnO2 (Mo-MnO2) is prepared and used as a high-performance cathode for AZIBs, which delivers an ultrahigh specific capacity of 652 mAh·g−1 at 0.2 A·g−1 based on the two-step two-electron redox reaction of Mn4+ ⇌ Mn3+ ⇌ Mn2+. Ex-situ structural analysis and density functional theory calculation reveal that the Mo5+ dopant plays an important role in enhancing the electronic conductivity of Mo-MnO2 and promoting Jahn—Teller distortion of octahedral [MnO6] in ZnMn2O4, which facilitates the second step redox reaction of Mn3+/Mn2+. This work provides a novel cathode materials design with multi-electron redox chemistry to achieve high energy density in AZIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, K.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

    Article  CAS  Google Scholar 

  2. Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134.

    Article  CAS  Google Scholar 

  3. Zhong, C.; Liu, B.; Ding, J.; Liu, X. R.; Zhong, Y. W.; Li, Y.; Sun, C. B.; Han, X. P.; Deng, Y. D.; Zhao, N. Q. et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 2020, 5, 440–449.

    Article  CAS  Google Scholar 

  4. Wang, C. L.; Gao, Y. X.; Sun, L. S.; Zhao, Y.; Yin, D. M.; Wang, H. R.; Cao, J. C.; Cheng, Y.; Wang, L. M. Anti-catalytic and zincophilic layers integrated zinc anode towards efficient aqueous batteries for ultra-long cycling stability. Nano Res. 2022, 15, 8076–8082.

    Article  CAS  Google Scholar 

  5. Wang, R.; Wu, Q. F.; Wu, M. J.; Zheng, J. X.; Cui, J.; Kang, Q.; Qi, Z. B.; Ma, J. D.; Wang, Z. C.; Liang, H. F. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 2022, 15, 7227–7233.

    Article  CAS  Google Scholar 

  6. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  7. Faqing Cao, Baohu Wu, Tianyu Li, Shengtong Sun, Yucong Jiao, Peiyi Wu. Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance. Nano Research 2022, 15, 2030–2039.

    Article  Google Scholar 

  8. Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

    Article  CAS  Google Scholar 

  9. Yufang Cao, Xiaohui Tang, Linge Li, Haifeng Tu, Yuzhen Hu, Yingying Yu, Shuang Cheng, Hongzhen Lin, Liwen Zhang, Jiangtao Di. et al. Fast Zn2+ mobility enabled by sucrose modified Zn2+ solvation structure for dendrite-free aqueous zinc battery. Nano Research 2022, https://doi.org/10.1007/s12274-022-4726-3.

  10. Liu, N. N.; Wu, X.; Fan, L. S.; Gong, S.; Guo, Z. K.; Chen, A. S.; Zhao, C. Y.; Mao, Y. C.; Zhang, N. Q.; Sun, K. N. Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Adv. Mater. 2020, 32, 1908420.

    Article  CAS  Google Scholar 

  11. Wang, S.; Yuan, Z. S.; Zhang, X.; Bi, S. S.; Zhou, Z.; Tian, J. L.; Zhang, Q. C.; Niu, Z. Q. Non-metal ion co-insertion chemistry in aqueous Zn/MnO2 batteries. Angew. Chem., Int. Ed. 2021, 60, 7056–7060.

    Article  CAS  Google Scholar 

  12. Hao Ren, Jin Zhao, Lan Yang, Qinghua Liang, Srinivasan Madhavi, Qingyu Yan. Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Research 2019, 12, 1347–1353.

    Article  Google Scholar 

  13. Xiong, T.; Yu, Z. G.; Wu, H. J.; Du, Y. H.; Xie, Q. D.; Chen, J. S.; Zhang, Y. W.; Pennycook, S. J.; Lee, W. S. V.; Xue, J. M. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 2019, 9, 1803815.

    Article  Google Scholar 

  14. Can Huang, Qiufan Wang, Daohong Zhang, Guozhen Shen. Coupling N-doping and rich oxygen vacancies in mesoporous ZnMn2O4 nanocages toward advanced. Nano Research 2022, 15, 8118–8127.

    Article  Google Scholar 

  15. Zhao, Q. H.; Song, A. Y.; Zhao, W. G.; Qin, R. Z.; Ding, S. X.; Chen, X.; Song, Y. L.; Yang, L. Y.; Lin, H.; Li, S. N. et al. Boosting the energy density of aqueous batteries via facile Grotthuss proton transport. Angew. Chem., Int. Ed. 2021, 60, 4169–4174.

    Article  CAS  Google Scholar 

  16. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  17. Fang, G. Z.; Zhu, C. Y.; Chen, M. H.; Zhou, J.; Tang, B. Y.; Cao, X. X.; Zheng, X. S.; Pan, A. Q.; Liang, S. Q. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 2019, 29, 1808375.

    Article  Google Scholar 

  18. Wang, D. H.; Wang, L. F.; Liang, G. J.; Li, H. F.; Liu, Z. X.; Tang, Z. J.; Liang, J. B.; Zhi, C. Y. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 2019, 13, 10643–10652.

    Article  CAS  Google Scholar 

  19. Zhang, Y.; Deng, S. J.; Pan, G. X.; Zhang, H. Z.; Liu, B.; Wang, X. L.; Zheng, X. S.; Liu, Q.; Wang, X. L.; Xia, X. H. et al. Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible zinc ion storage. Small Methods 2020, 4, 1900828.

    Article  CAS  Google Scholar 

  20. Huang, J.; Tang, X.; Liu, K.; Fang, G.; He, Z.; Li, Z. Interfacial chemical binding and improved kinetics assisting stable aqueous Zn-MnO2 batteries. Mater. Today Energy 2020, 17, 100475.

    Article  Google Scholar 

  21. Guo, S.; Liang, S. Q.; Zhang, B. S.; Fang, G. Z.; Ma, D.; Zhou, J. Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery. ACS Nano 2019, 13, 13456–13464.

    Article  CAS  Google Scholar 

  22. Huang, J. D.; Zeng, J.; Zhu, K. J.; Zhang, R. Z.; Liu, J. High-performance aqueous zinc-manganese battery with reversible Mn2+/Mn4+ double redox achieved by carbon coated MnOx nanoparticles. Nano-Micro Lett. 2020, 12, 110.

    Article  CAS  Google Scholar 

  23. Zhao, S.; Han, B.; Zhang, D. T.; Huang, Q.; Xiao, L.; Chen, L. B.; Ivey, D. G.; Deng, Y. D.; Wei, W. F. Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A 2018, 6, 5733–5739.

    Article  CAS  Google Scholar 

  24. Zeng, X. H.; Liu, J. T.; Mao, J. F.; Hao, J. N.; Wang, Z. J.; Zhou, S.; Ling, C. D.; Guo, Z. P. Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry. Adv. Energy Mater. 2020, 10, 1904163.

    Article  CAS  Google Scholar 

  25. Xie, C. X.; Li, T. Y.; Deng, C. Z.; Song, Y.; Zhang, H. M.; Li, X. F. A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 2020, 13, 135–143.

    Article  CAS  Google Scholar 

  26. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  27. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Article  Google Scholar 

  28. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  29. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  30. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  31. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  32. Chen, C.; Xu, K.; Ji, X.; Zhang, B.; Miao, L.; Jiang, J. J. Enhanced electrochemical performance by facile oxygen vacancies from lower valence-state doping for ramsdellite-MnO2. J. Mater. Chem. A 2015, 3, 12461–12467.

    Article  CAS  Google Scholar 

  33. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  Google Scholar 

  34. Kang, Q.; Zhao, J.; Li, X.; Zhu, G. Y.; Feng, X. M.; Ma, Y. W.; Huang, W.; Liu, J. A single wire as all-inclusive fully functional supercapacitor. Nano Energy 2017, 32, 201–208.

    Article  CAS  Google Scholar 

  35. Rong, S. P.; Zhang, P. Y.; Yang, Y. J.; Zhu, L.; Wang, J. L.; Liu, F. MnO2 framework for instantaneous mineralization of carcinogenic airborne formaldehyde at room temperature. ACS Catal. 2017, 7, 1057–1067.

    Article  CAS  Google Scholar 

  36. Chen, Y. T.; Gu, S.; Wu, S. L.; Ma, X. X.; Hussain, I.; Sun, Z. P.; Lu, Z. G.; Zhang, K. L. Copper activated near-full two-electron Mn4+/Mn2+ redox for mild aqueous Zn/MnO2 battery. Chem. Eng. J. 2022, 450, 137923.

    Article  CAS  Google Scholar 

  37. Zhu, C. Y.; Fang, G. Z.; Zhou, J.; Guo, J. H.; Wang, Z. Q.; Wang, C.; Li, J. Y.; Tang, Y.; Liang, S. Q. Binder-free stainless steel@Mn3O4 nanoflower composite: A high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J. Mater. Chem. A 2018, 6, 9677–9683.

    Article  CAS  Google Scholar 

  38. Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.

    Article  CAS  Google Scholar 

  39. Wei, C. G.; Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J. Phys. Chem. Solids 2012, 73, 1487–1491.

    Article  CAS  Google Scholar 

  40. Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018, 12, 3140–3148.

    Article  CAS  Google Scholar 

  41. Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y. Y.; Qiu, M. D.; Xu, J. Z.; Liu, Y. C.; Jiao, L. F.; Cheng, F. Y. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018, 3, 1366–1372.

    Article  CAS  Google Scholar 

  42. Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

    Article  Google Scholar 

  43. Kundu, D.; Vajargah, S. H.; Wan, L. W.; Adams, B.; Prendergast, D.; Nazar, L. F. Aqueous vs. nonaqueous Zn-ion batteries:Consequences of the desolvation penalty at the interface. Energy Environ. Sci. 2018, 11, 881–892.

    Article  CAS  Google Scholar 

  44. Hu, P.; Zhu, T.; Wang, X. P.; Wei, X. J.; Yan, M. Y.; Li, J. T.; Luo, W.; Yang, W.; Zhang, W. C.; Zhou, L. et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 2018, 18, 1758–1763.

    Article  CAS  Google Scholar 

  45. Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5, 1400930.

    Article  Google Scholar 

  46. Liu, Z.; Pulletikurthi, G.; Endres, F. A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 12158–12164.

    Article  CAS  Google Scholar 

  47. Hou, Z. G.; Zhang, X. Q.; Li, X. N.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 2017, 5, 730–738.

    Article  CAS  Google Scholar 

  48. Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21935001 and 22101015), the National Key Research and Development Program of China (No. 2018YFA0702002), and the Program for Changjiang Scholars and Innovation Research Team in the University (No. IRT1205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Liu or Xiaoming Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Zhao, Y., Zhao, Y. et al. Mo doping provokes two electron reaction in MnO2 with ultrahigh capacity for aqueous zinc ion batteries. Nano Res. 16, 2511–2518 (2023). https://doi.org/10.1007/s12274-022-5057-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5057-0

Keywords

Navigation