Skip to main content
Log in

Construction of MnO2 with oxygen defects as cathode material for aqueous zinc ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In recent years, aqueous zinc-ion batteries (AZIBs) have been rapidly developed and are favored by the public as a future large-scale energy storage system. Manganese-based compounds with multiple valence states and high electrochemical activity have been extensively investigated as cathodes for AZIBs due to their abundant reserves and high theoretical capacity. However, some problems hinder their application in AZIBs, such as low conductivity and sluggish kinetics. Defect engineering has been verified as an effective method to alleviate the above limitations. In this work, manganese oxide with oxygen defects (Od-MnO2) was successfully constructed and characterized by XRD, SEM, XPS, and TEM. Surface oxygen defects increase ion active transfer sites and improve electronic conductivity. Compared with MnO2, Od-MnO2 produced more localized electrons which could improve the electrochemical performance as cathodes for AZIBs. The discharge specific capacity of Od-MnO2 reaches 307.9 mAh g−1 in the first cycle at a current density of 0.1 A g−1 and maintains at 100.5 mAh g−1 at a current density of 10.0 A g−1. After 1000 cycles, the discharge specific capacity can still reach 82.5 mAh g−1 and the capacity retention rate is 82.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thangarasu S, Seo H, Jung H-Y (2021) Feasibilities and electrochemical performance of surface-modified polyester separator for lead-acid battery applications. Electrochim Acta 388:138390

    Article  CAS  Google Scholar 

  2. Zhu S, Wang Q, Ni JF (2023) Aqueous transition-metal ion batteries: materials and electrochemistry. Energychem 5(3):28

    Article  Google Scholar 

  3. Selvakumaran D, Pan A, Liang S, Cao G (2019) A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J Mater Chem A 7(31):18209–18236

    Article  CAS  Google Scholar 

  4. He P, Chen Q, Yan M, Xu X, Zhou L, Mai L, Nan C-W (2019) Building better zinc-ion batteries: a materials perspective. EnergyChem 1(3):100022

    Article  Google Scholar 

  5. Chen Y, Zhuo S, Li Z, Wang C (2020) Redox polymers for rechargeable metal-ion batteries. EnergyChem 2(2):100030

    Article  Google Scholar 

  6. Alias N, Mohamad AA (2015) Advances of aqueous rechargeable lithium-ion battery: a review. J Power Sources 27:237–251

    Article  Google Scholar 

  7. Liu YY, Yuan GQ, Wang XY, Liu JP, Zeng QY, Guo XT, Wang H, Liu CS, Pang H (2022) Tuning electronic structure of ultrathin V6O13 nanobelts via nickel doping for aqueous zinc-ion battery cathodes. Chem Eng J 428:132538

    Article  CAS  Google Scholar 

  8. Diouf B, Pode R (2015) Potential of lithium-ion batteries in renewable energy. Renew Energy 76:375–380

    Article  Google Scholar 

  9. Liu L, Hou Y, Wu X, Xiao S, Chang Z, Yang Y, Wu Y (2013) Nanoporous selenium as a cathode material for rechargeable lithium-selenium batteries. Chem Commun (Camb) 49(98):115–157

    Article  Google Scholar 

  10. Zhang Y, Liu J, Li S-L, Su Z-M, Lan Y-Q (2019) Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem 1(3):100021

    Article  Google Scholar 

  11. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  12. Wu X, Luo Y, Sun M, Qian J, Cao Y, Ai X, Yang H (2015) Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13:117–123

    Article  CAS  Google Scholar 

  13. Gao M, Xue Y, Zhang Y, Zhu C, Yu H, Guo X, Sun S, Xiong S, Kong Q, Zhang J (2022) Growing Co-Ni-Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries. Inorg Chem Front 9(15):3933–3942

    Article  CAS  Google Scholar 

  14. Xue Y, Guo X, Wu M, Chen J, Duan M, Shi J, Zhang J, Cao F, Liu Y, Kong Q (2021) Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries. Nano Res 14(10):3598–3607

    Article  ADS  CAS  Google Scholar 

  15. Guo X, Duan M, Zhang J, Xi B, Li M, Yin R, Zheng X, Liu Y, Cao F, An X, Xiong S (2022) A general self-assembly induced strategy for synthesizing 2D ultrathin cobalt-based compounds toward optimizing hydrogen evolution catalysis. Adv Func Mater 32(51):2209397

    Article  CAS  Google Scholar 

  16. Guo X, Liu S, Wan X, Zhang J, Liu Y, Zheng X, Kong Q, Jin Z (2022) Controllable solid-phase fabrication of an Fe2O3/Fe5C2/Fe-N-C electrocatalyst toward optimizing the oxygen reduction reaction in zinc-air batteries. Nano Lett 22(12):4879–4887

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Wang X, Xu L, Chang YZ, Song H, Hou WJ, Zhang Y, Li YP, Zhu S, Xiao YM, Han GY (2023) Electrodeposition of polypyrrole for high-performance zinc ion battery. J Solid State Electrochem 27(6):1459–1467

    Article  CAS  Google Scholar 

  18. Fang GZ, Zhu CY, Chen MH, Zhou J, Tang BY, Cao XX, Zheng XS, Pan AQ, Liang SQ (2019) Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Func Mater 29(15):1808375

    Article  Google Scholar 

  19. Han MM, Huang JW, Liang SQ, Shan LT, Xie XS, Yi ZY, Wang YR, Guo S, Zhou J (2020) Oxygen defects in beta-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. Iscience 23(1):100797

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Xiong T, Yu ZG, Wu H, Du Y, Xie Q, Chen J, Zhang YW, Pennycook SJ, Lee WSV, Xue J (2019) Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv Energy Mater 9(14):1803815

    Article  Google Scholar 

  21. Xiong T, Zhang Y, Lee WSV, Xue J (2020) Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: a review. Adv Energy Mater 10(34):2001769

    Article  CAS  Google Scholar 

  22. Zhao Y, Chang C, Teng F, Zhao Y, Chen G, Shi R, Waterhouse GIN, Huang W, Zhang T (2017) Defect-engineered ultrathin delta-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv Energy Mater 7(18):1700005

    Article  Google Scholar 

  23. Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller KT, Liu J (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 1(5):16039

    Article  ADS  CAS  Google Scholar 

  24. Altaf NH, Anjam T, Sajid MM, Shad NA, Shukrullah S, Naz MY, Javed Y (2020) Characterization of manganese/cobalt oxide composites synthesized by chemical co-precipitation method. IOP Conf Ser: Mater Sci Eng 863(1):012021

    Article  CAS  Google Scholar 

  25. Cheng F, Zhang T, Zhang Y, Du J, Han X, Chen J (2013) Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew Chem Int Ed Engl 52(9):2474–2477

    Article  CAS  PubMed  Google Scholar 

  26. Heidari S, Balaghi SE, Sologubenko AS, Patzke GR (2021) Economic manganese-oxide-based anodes for efficient water oxidation: rapid synthesis and in situ transmission electron microscopy monitoring. ACS Catal 11(5):2511–2523

    Article  CAS  Google Scholar 

  27. Li Y, Zhang D, Huang S, Yang HY (2021) Guest-species-incorporation in manganese/vanadium-based oxides: towards high performance aqueous zinc-ion batteries. Nano Energy 85:105969

    Article  CAS  Google Scholar 

  28. Liu Y, Wu X (2022) Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries. Chin Chem Lett 33(3):1236–1244

    Article  CAS  Google Scholar 

  29. Tang H, Chen W, Li N, Hu Z, Xiao L, Xie Y, Xi L, Ni L, Zhu Y (2022) Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage. Energy Storage Mater 48:335–343

    Article  Google Scholar 

  30. Zhao YL, Zhu YH, Zhang XB (2020) Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. Infomat 2(2):237–260

    Article  CAS  Google Scholar 

  31. Dai Y, Wang X, Zhu X, Liu H, Wang P, Wang X, Zhang S, Sun Y, Gao D, Han R, Luo C (2020) Electrochemical assays for determination of H2O2 and prostate-specific antigen based on a nanocomposite consisting of CeO2 nanoparticle-decorated MnO2 nanospheres. Mikrochim Acta 187(8):428

    Article  CAS  PubMed  Google Scholar 

  32. Wu Y, Fee J, Tobin Z, Shirazi-Amin A, Kerns P, Dissanayake S, Mirich A, Suib SL (2020) Amorphous manganese oxides: an approach for reversible aqueous zinc-ion batteries. ACS Appl Energy Mater 3(2):1627–1633

    Article  CAS  Google Scholar 

  33. Sada K, Barpanda P (2019) Layered sodium manganese oxide Na2Mn3O7 as an insertion host for aqueous zinc-ion batteries. Mrs Adv 4(49):2651–2657

    Article  CAS  Google Scholar 

  34. Zhu S, Wang Y, Zhang J, Sheng J, Yang F, Wang M, Ni J, Jiang H, Li Y (2022) Jahn-Teller effect directed bandgap tuning of birnessite for pseudocapacitive application. Energy Environ Mater 6(3):e12382

    Article  Google Scholar 

  35. Gou L, Yang Y, Zhang YF, Li JR, Fan XY, Li DL (2023) In situ synthesis of Bi3+-doped δ-MnO2 cathode to enhance the cycle stability for aqueous zinc-ion batteries. J Solid State Electrochem 27(6):1443–1450

    Article  CAS  Google Scholar 

  36. Liu D, Wang C, Yu Y, Zhao B-H, Wang W, Du Y, Zhang B (2019) Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides. Chem 5(2):376–389

    Article  CAS  Google Scholar 

  37. Ji D, Fan L, Tao L, Sun Y, Li M, Yang G, Tran TQ, Ramakrishna S, Guo S (2019) The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew Chem Int Ed Engl 58(39):13840–13844

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Zhou T, Jiang K, Da P, Peng Z, Tang J, Kong B, Cai W-B, Yang Z, Zheng G (2014) Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv Energy Mater 4(16):1400696

    Article  Google Scholar 

  39. Lin KA, Oh WD, Zheng MW, Kwon E, Lee J, Lin JY, Duan X, Ghanbari F (2021) Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using manganese dioxide with different crystal structures: a comparative study. J Colloid Interface Sci 592:416–429

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Ma J, Zhang S, Duan X, Wang Y, Wu D, Pang J, Wang X, Wang S (2021) Catalytic oxidation of sulfachloropyridazine by MnO2: effects of crystalline phase and peroxide oxidants. Chemosphere 267:129287

    Article  CAS  PubMed  Google Scholar 

  41. Ma S, Guo J, Ye X, Tian B, Jiang X, Gao T (2022) Mechanistic and thermodynamic insights into the SO2 oxidation on MnO2 catalysts: a combined theoretical and experimental study. Chemosphere 307(Pt 2):135885

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20201472), Changzhou Science and Technology Bureau (CM20223017), and the National Natural Science Foundation of China (No. 51972151, 52171212).

Author information

Authors and Affiliations

Authors

Contributions

Qiaohui Li: data curation, writing—original draft preparation. Zhixiang Cao and Aohua Wu: visualization, software. Xinyue Zhang, Jiaqi Zhang, and Jiajie Gu: investigation. Wutao Mao: conceptualization, methodology, formal analysis. Keyan Bao: writing, reviewing. Zhongcheng Song: editing, project administration, validation.

Corresponding authors

Correspondence to Wutao Mao or Keyan Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Cao, Z., Wu, A. et al. Construction of MnO2 with oxygen defects as cathode material for aqueous zinc ion batteries. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05856-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05856-z

Keywords

Navigation