Skip to main content
Log in

Fe2Mo3O8/XC-72 electrocatalyst for enhanced electrocatalytic nitrogen reduction reaction under ambient conditions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To perform the electrochemical nitrogen reduction reaction (NRR) under milder conditions for sustainable ammonia production, electrocatalysts should exhibit high selectivity, activity, and durability. However, the key restrictions are the highly stable N≡N triple bond and the competitive hydrogen evolution reaction (HER), which make it difficult to adsorb and activate N2 on the surface of electrocatalysts, leading to a low ammonia yield and Faraday efficiency. Inspired by the enzymatic nitrogenase process and using the Fe-Mo as the active center, here we report supported Fe2Mo3O8/XC-72 as an effective and durable electrocatalyst for the NRR. Fe2Mo3O8/XC-72 exhibited NRR activity with an NH3 yield of 30.4 µg·h−1·mg−1 (−0.3 V) and a Faraday efficiency of 8.2% (−0.3 V). Theoretical calculations demonstrated that the electrocatalytic nitrogen fixation mechanism involved the Fe atom in the Fe2Mo3O8/XC-72 electrocatalyst acting as the main active site in the enzymatic pathway (*NH2*NH3), which activated nitrogen molecules and promoted the NRR performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

    Article  CAS  Google Scholar 

  2. Niu, L. J.; Wang, D. D.; Xu, K.; Hao, W. C.; An, L.; Kang, Z. H.; Sun, Z. C. Tuning the performance of nitrogen reduction reaction by balancing the reactivity of N2 and the desorption of NH3. Nano Res. 2021, 14, 4093–4099.

    Article  CAS  Google Scholar 

  3. Wan, Y. C.; Xu, J. C.; Lv, R. T. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 2019, 27, 69–90.

    Article  CAS  Google Scholar 

  4. Xu, H.; Ithisuphalap, K.; Li, Y.; Mukherjee, S.; Lattimer, J.; Soloveichik, G.; Wu, G. Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: Theory, practices, and challenges for catalysts and electrolytes. Nano Energy 2020, 69, 104469.

    Article  CAS  Google Scholar 

  5. Zhang, W. Q.; Low, J.; Long, R.; Xiong, Y. J. Metal-free electrocatalysts for nitrogen reduction reaction. EnergyChem 2020, 2, 100040.

    Article  Google Scholar 

  6. Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

    Article  CAS  Google Scholar 

  7. Shi, L.; Yin, Y.; Wang, S. J.; Xu, X. Y.; Wu, H.; Zhang, J. Q.; Wang, S. B.; Sun, H. Q. Rigorous and reliable operations for electrocatalytic nitrogen reduction. Appl. Catal. B: Environ. 2020, 278, 119325.

    Article  CAS  Google Scholar 

  8. Guo, X. X.; Du, H. T.; Qu, F. L.; Li, J. H. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 3531–3543.

    Article  CAS  Google Scholar 

  9. Zhai, Y. L.; Zhu, Z. J.; Zhu, C. Z.; Chen, K.; Zhang, X. J.; Tang, J.; Chen, J. Single-atom catalysts boost nitrogen electroreduction reaction. Mater. Today 2020, 38, 99–113.

    Article  CAS  Google Scholar 

  10. Shi, M. M.; Bao, D.; Li, S. J.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124.

    Article  Google Scholar 

  11. Xue, Z. H.; Zhang, S. N.; Lin, Y. X.; Su, H.; Zhai, G. Y.; Han, J. T.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% Faradaic efficiency. J. Am. Chem. Soc. 2019, 141, 14976–14980.

    Article  CAS  Google Scholar 

  12. Kugler, K.; Luhn, M.; Schramm, J. A.; Rahimi, K.; Wessling, M. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis. Phys. Chem. Chem. Phys. 2015, 17, 3768–3782.

    Article  CAS  Google Scholar 

  13. Wei, H.; Jiang, Q.; Ampelli, C.; Chen, S. M.; Perathoner, S.; Liu, Y. F.; Centi, G. Enhancing N2 fixation activity by converting Ti3C2 mxenes nanosheets to nanoribbons. ChemSusChem 2020, 13, 5614–5619.

    Article  CAS  Google Scholar 

  14. Zhou, Y.; Yu, X. P.; Sun, F. C.; Zhang, J. MoP supported on reduced graphene oxide for high performance electrochemical nitrogen reduction. Dalton Trans. 2020, 49, 988–992.

    Article  CAS  Google Scholar 

  15. Sultana, S.; Mansingh, S.; Parida, K. M. Phosphide protected FeS2 anchored oxygen defect oriented CeO2NS based ternary hybrid for electrocatalytic and photocatalytic N2 reduction to NH3. J. Mater. Chem. A 2019, 7, 9145–9153.

    Article  CAS  Google Scholar 

  16. Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

    Article  CAS  Google Scholar 

  17. Yu, G. S.; Guo, H. R.; Kong, W. H.; Wang, T.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Li, T. S.; Sun, X. P. Electrospun TiC/C nanofibers for ambient electrocatalytic N2 reduction. J. Mater. Chem. A 2019, 7, 19657–19661.

    Article  CAS  Google Scholar 

  18. Zhang, L. L.; Cong, M. Y.; Ding, X.; Jin, Y.; Xu, F. F.; Wang, Y.; Chen, L.; Zhang, L. X. A janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem. 2020, 132, 10980–10985.

    Article  Google Scholar 

  19. Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res. 2021, 14, 2711–2716.

    Article  CAS  Google Scholar 

  20. Yu, X. M.; Peng, H.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

    Article  CAS  Google Scholar 

  21. Liu, Y. T.; Chen, X. X.; Yu, J. Y.; Ding, B. Carbon-nanoplated CoS@TiO2 nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 18903–18907.

    Article  CAS  Google Scholar 

  22. Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181–1186.

    Article  CAS  Google Scholar 

  23. Yang, B.; Ding, W. L.; Zhang, H. H.; Zhang, S. J. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 2021, 14, 672–687.

    Article  CAS  Google Scholar 

  24. Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

    Article  Google Scholar 

  25. Rao, L.; Xu, X.; Adamo, C. Theoretical investigation on the role of the central carbon atom and close protein environment on the nitrogen reduction in Mo nitrogenase. ACS Catal. 2016, 6, 1567–1577.

    Article  CAS  Google Scholar 

  26. Liu, W.; Han, L. L.; Wang, H. T.; Zhao, X. R.; Boscoboinik, J. A.; Liu, X. J.; Pao, C. W.; Sun, J. Q.; Zhuo, L. C.; Luo, J. et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.

    Article  CAS  Google Scholar 

  27. Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

    Article  Google Scholar 

  28. Milton, R. D.; Abdellaoui, S.; Khadka, N.; Dean, D. R.; Leech, D.; Seefeldt, L. C.; Minteer, S. D. Nitrogenase bioelectrocatalysis: Heterogeneous ammonia and hydrogen production by MoFe protein. Energy Environ. Sci. 2016, 9, 2550–2554.

    Article  CAS  Google Scholar 

  29. Ahmed, M. I.; Chen, S.; Ren, W. H.; Chen, X. J.; Zhao, C. Synergistic bimetallic CoFe2O4 clusters supported on graphene for ambient electrocatalytic reduction of nitrogen to ammonia. Chem. Commun. 2019, 55, 12184–12187.

    Article  CAS  Google Scholar 

  30. Chu, K.; Li, Q. Q.; Cheng, Y. H.; Liu, Y. P. Efficient electrocatalytic nitrogen fixation on FeMoO4 nanorods. ACS Appl. Mater. Interfaces 2020, 12, 11789–11796.

    Article  CAS  Google Scholar 

  31. Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

    Article  CAS  Google Scholar 

  32. Li, C. B.; Yu, J. L.; Yang, L.; Zhao, J. X.; Kong, W. H.; Wang, T.; Asiri, A. M.; Li, Q.; Sun, X. P. Spinel LiMn2O4 nanofiber: An efficient electrocatalyst for N2 reduction to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 9597–9601.

    Article  CAS  Google Scholar 

  33. Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed. 2019, 58, 15541–15547.

    Article  CAS  Google Scholar 

  34. Lu, K.; Xia, F.; Li, B. M.; Liu, Y. Z.; Razak, I. B. A.; Gao, S. Y.; Kaelin, J.; Brown, D. E.; Cheng, Y. W. Synergistic multisites Fe2Mo6S8 electrocatalysts for ambient nitrogen conversion to ammonia. ACS Nano 2021, 15, 16887–16895.

    Article  CAS  Google Scholar 

  35. Yao, J. X.; Zhou, Y. T.; Yan, J. M.; Jiang, Q. Regulating Fe2(MoO4)3 by Au nanoparticles for efficient N2 electroreduction under ambient conditions. Adv. Energy Mater. 2021, 11, 2003701.

    Article  CAS  Google Scholar 

  36. Zhao, X. H.; Lan, X.; Yu, D. K.; Fu, H.; Liu, Z. M.; Mu, T. C. Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions. Chem. Commun. 2018, 54, 13010–13013.

    Article  CAS  Google Scholar 

  37. An, L.; Jiang, N.; Li, B.; Hua, S. X.; Fu, Y. T.; Liu, J. X.; Hao, W.; Xia, D. G.; Sun, Z. C. A highly active and durable iron/cobalt alloy catalyst encapsulated in N-doped graphitic carbon nanotubes for oxygen reduction reaction by a nanofibrous dicyandiamide template. J. Mater. Chem. A 2018, 6, 5962–5970.

    Article  CAS  Google Scholar 

  38. Zhao, Y. L.; Li, F. S.; Li, W. L.; Li, Y. Z.; Liu, C.; Zhao, Z. Q.; Shan, Y.; Ji, Y. F.; Sun, L. C. Identification of M-NH2-NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded few catalyst. Angew. Chem., Int. Ed. 2021, 60, 20331–20341.

    Article  CAS  Google Scholar 

  39. Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

    Article  CAS  Google Scholar 

  40. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

    Article  CAS  Google Scholar 

  41. Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1−xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702–709.

    Article  CAS  Google Scholar 

  42. Zhang, Y. Z.; Hu, J.; Zhang, C. X.; Liu, Y. Z.; Xu, M. Y.; Xue, Y. J.; Liu, L. F.; Leung, M. K. H. Bimetallic Mo-Co nanoparticles anchored on nitrogen-doped carbon for enhanced electrochemical nitrogen fixation. J. Mater. Chem. A 2020, 5, 9091–9098.

    Article  Google Scholar 

  43. Zhang, J.; Ji, Y. J.; Wang, P. T.; Shao, Q.; Li, Y. Y.; Huang, X. Adsorbing and activating N2 on heterogeneous Au-Fe3O4 nanoparticles for N2 fixation. Adv. Funct. Mater. 2020, 30, 1906579.

    Article  CAS  Google Scholar 

  44. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    Article  CAS  Google Scholar 

  45. Wu, J.; Wang, Z. X.; Li, S. W.; Niu, S. Q.; Zhang, Y. Y.; Hu, J.; Zhao, J. X.; Xu, P. FeMoO4 nanorods for efficient ambient electrochemical nitrogen reduction. Chem. Commun. 2020, 56, 6834–6837.

    Article  CAS  Google Scholar 

  46. Chu, Z. Q.; Stampfl, C.; Duan, X. M. Boron-doped g-C6N6 layer as a metal-free photoelectrocatalyst for N2 reduction reaction. J. Phys. Chem. C 2019, 123, 28739–28743.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Beijing Municipal High Level Innovative Team Building Program (No. IDHT20180504), Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910005017), the National Natural Science Foundation of China (Nos. 51801006, 21805004, 21872001, and 21936001), Beijing Natural Science Foundation (No. 2192005), and Beijing Municipal Science and Natural Science Fund Project (Nos. KM201910005016 and 2017000020124G085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li An or Zaicheng Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Niu, L., Ma, Z. et al. Fe2Mo3O8/XC-72 electrocatalyst for enhanced electrocatalytic nitrogen reduction reaction under ambient conditions. Nano Res. 15, 5940–5945 (2022). https://doi.org/10.1007/s12274-022-4262-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4262-1

Keywords

Navigation