Skip to main content
Log in

Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic N2 reduction provides an attractive alternative to Haber-Bosch process for artificial NH3 synthesis. The difficulty of suppressing competing proton reduction, however, largely impedes its practical use. Herein, we design a hydrophobic octadecanethiol-modified Fe3P nanoarrays supported on carbon paper (C18@Fe3P/CP) to effectively repel water, concentrate N2, and enhance N2-to-NH3 conversion. Such catalyst achieves an NH3 yield of 1.80 × 10−10 mol·s−1·cm−2 and a high Faradaic efficiency of 11.22% in 0.1 M Na2SO4, outperforming the non-modified Fe3P/CP (2.16 × 10−11 mol·s−1·cm−2, 0.9%) counterpart. Significantly, C18@Fe3P/CP renders steady N2-fixing activity/selectivity in cycling test and exhibits durability for at least 25 h. First-principles calculations suggest that the surface electronic structure and chemical activity of Fe3P can be well tuned by the thiol modification, which facilitates N2 electroreduction activity and catalytic formation of NH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”. Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

    Article  Google Scholar 

  2. Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    Article  CAS  Google Scholar 

  3. Berry, G. D.; Martinez-Frias, J.; Espinosa-Loza, F.; Aceves, S. M. Hydrogen storage and transportation. In Encyclopedia of Energy. Cleveland, C. J., Ed.; Elsevier: Amsterdam, 2004; pp 267–281.

    Chapter  Google Scholar 

  4. Jennings, J. R. Catalytic Ammonia Synthesis: Fundamentals and Practice; Spring Science & Business Media: New York, 1991.

    Book  Google Scholar 

  5. Xu, T.; Ma, B. Y.; Liang, J.; Yue, L. C.; Liu, Q.; Li, T. S.; Zhao, H. T.; Luo, Y. L.; Lu, S. Y.; Sun, X. P. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys. Chim. Sin. 2021, 37, 2009043.

    Google Scholar 

  6. Van des Ham, C. J. M.; Koper, T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.

    Article  Google Scholar 

  7. Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

    Article  CAS  Google Scholar 

  8. Guo, C. X.; Ran, J. R; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    Article  CAS  Google Scholar 

  9. Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F., Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis-The selectivity challenge. ACS Catal. 2017, 7, 706–709.

    Article  CAS  Google Scholar 

  10. Xu, T.; Liang, J.; Li, S. X.; Xu, Z. Q.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Liu, Q.; Shi, X. F.; Asiri, A. M. et al. Recent advances in nonprecious metal oxide electrocatalysts and photocatalysts for N2 reduction reaction under ambient condition. Small Sci. 2021, 1, 2000069.

    Article  Google Scholar 

  11. Mao, S. D.; Duan, Z. H. A thermodynamic model for calculating nitrogen solubility, gas phase composition and density of the N2-H2O-NaCl system. Fluid Phase Equilib. 2006, 248, 103–114.

    Article  CAS  Google Scholar 

  12. Zhou, F. L.; Azofra, L. M.; Ali, M.; Kar, M.; Simonov, A. N.; McDonnell-Worth, C.; Sun, C. H.; Zhang X. Y.; MacFarlane, D. R. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 2017, 10, 2516–2520.

    Article  CAS  Google Scholar 

  13. Huang, H. H.; Xia, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 11427–11430.

    Article  CAS  Google Scholar 

  14. Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

    Article  Google Scholar 

  15. Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.

    Article  Google Scholar 

  16. Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. N2 electrochemical reduction: Achieving a record-high yield rate of \(120.9\,\mu {{\rm{g}}_{{\rm{N}}{{\rm{H}}_3}}}{\rm{.m}}{{\rm{g}}_{{\rm{cat}}{\rm{.}}}}^{ - 1} \cdot {{\rm{h}}^{ - 1}}\) for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

    Article  Google Scholar 

  17. Glazer, A. N.; Kechris, K. J. Conserved amino acid sequence features in the α subunits of MoFe, VFe, and FeFe nitrogenases. PLoS One 2009, 4, e6136.

    Article  Google Scholar 

  18. Howard, J. B.; Rees, D. C. Structural basis of biological nitrogen fixation. Chem. Rev. 1996, 96, 2965–2982.

    Article  CAS  Google Scholar 

  19. Kong, J. M.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J. et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10986–10995.

    Article  CAS  Google Scholar 

  20. Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389.

    Article  CAS  Google Scholar 

  21. Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W. E.; Feng, X. F. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 2018, 8, 9312–9319.

    Article  CAS  Google Scholar 

  22. Zhu, X. J.; Liu, Z. C.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Wu, Y. P.; Sun, X. P. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chem. Commun. 2018, 54, 11332–11335.

    Article  CAS  Google Scholar 

  23. Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209–214.

    Article  CAS  Google Scholar 

  24. Zhao, X. H.; Lan, X.; Yu, D. K.; Fu, H.; Liu, Z. M.; Mu, T. C. Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electroChemical N2 fixation under ambient conditions. Chem. Commun. 2018, 54, 13010–13013.

    Article  CAS  Google Scholar 

  25. Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbonnanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.

    Article  CAS  Google Scholar 

  26. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

    Article  CAS  Google Scholar 

  27. Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-3276-9.

  28. Wei, P. P.; Geng, Q.; Channa, A. I.; Tong, X.; Luo, Y. L.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Wang, Z. M.; Sun, X. P. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 2020, 13, 2967–2972.

    Article  CAS  Google Scholar 

  29. Mukherjee, S.; Cullen, D. A.; Karakalos, S.; Liu, K. X.; Zhang, H.; Zhao, S.; Xu, H.; More, K. L.; Wang, G. F.; Wu, G. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 2018, 48, 217–226.

    Article  CAS  Google Scholar 

  30. Chu, K.; Liu, Y. P.; Li, Y. B.; Zhang, H.; Tian, Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 2019, 7, 4389–4394.

    Article  CAS  Google Scholar 

  31. Li, S. X.; Wang, Y. Y.; Liang, J.; Xu, T.; Ma, D. W.; Liu, Q.; Li, T. S.; Xu, S. R.; Chen, G.; Asiri, A. M. et al. TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. Mater. Today Phys. 2021, 18, 100396

    Article  CAS  Google Scholar 

  32. Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.

    Article  CAS  Google Scholar 

  33. Zhao, R. B.; Geng, Q.; Chang, L.; Wei, P. P.; Luo, Y. L.; Shi, X. F.; Asiri, A. M. Lu, S. Y.; Wang, Z. M.; Sun, X. P. Cu3P nanoparticles-reduced graphene oxide hybrid: An efficient electrocatalyst to realize N2-to-NH3 conversion under ambient conditions. Chem. Commun. 2020, 56, 9328–9331.

    Article  CAS  Google Scholar 

  34. Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

    Article  Google Scholar 

  35. Wang, T.; Li, S. X.; He, B. L.; Zhu, X. J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Ye, C.; Asiri, A. M. et al. Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions. Chin. J. Catal. 2021, 42, 1024–1029.

    Article  CAS  Google Scholar 

  36. Gao, S. Y.; Zhu, Y. Z.; Chen, Y.; Tian, M.; Yang, Y. J.; Jiang, T.; Wang, Z. L. Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Mater. Today 2019, 28, 17–24.

    Article  CAS  Google Scholar 

  37. Wu, T. W.; Li, X. Y.; Zhu, X. J.; Mou, S. Y.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zhang, Y. N.; Zheng, B. Z.; Zhao, H. T. et al. P-doped graphene toward enhanced electrocatalytic N2 reduction. Chem. Commun. 2020, 56, 1831–1834.

    Article  CAS  Google Scholar 

  38. Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

    Article  CAS  Google Scholar 

  39. Wang, T.; Liu, Q.; Li, T. S.; Lu, S. Y.; Chen, G.; Shi, X. F.; Asiri, A. M.; Luo, Y. L.; Ma, D. W.; Sun, X. P. Magnetron sputtered Mo3Si thin film: An efficient electrocatalyst for N2 reduction under ambient conditions. J. Mater. Chem. A 2021, 9, 884–888.

    Article  Google Scholar 

  40. Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y. K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.

    Article  CAS  Google Scholar 

  41. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    Article  CAS  Google Scholar 

  42. Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.

    Article  CAS  Google Scholar 

  43. Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

    Article  CAS  Google Scholar 

  44. Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008.

    Article  CAS  Google Scholar 

  45. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  46. Blöchl, P. E. Projector Augmented-Wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  47. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  48. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (Dft-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  49. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

    Article  Google Scholar 

  50. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  51. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  52. NIST Chemistry WebBook. DOI: https://doi.org/10.18434/T4D303. http://webbook.nist.gov/chemistry/.

  53. Pirim, C.; Pasek, M. A.; Sokolov, D. A.; Sidorov, A. N.; Gann, R. D.; Orlando, T. M. Investigation of schreibersite and intrinsic oxidation products from Sikhote-Alin, Seymchan, and Odessa Meteorites and Fe3P and Fe2NiP synthetic surrogates. Geochim. Cosmochim. Acta 2014, 140, 259–274.

    Article  CAS  Google Scholar 

  54. Colson, A. C.; Chen, C. W.; Morosan, E.; Whitmire, K. H. Synthesis of phase-pure ferromagnetic Fe3P films from single-source molecular precursors. Adv. Funct. Mater. 2012, 22, 1850–1855.

    Article  CAS  Google Scholar 

  55. Chen, X. L.; Shi, T.; Zhong, K. L.; Wu, G. L.; Lu, Y. Capacitive behavior of MoS2 decorated with FeS2@carbon nanospheres. Chem. Eng. J. 2020, 379, 122240.

    Article  CAS  Google Scholar 

  56. Devi, N. R.; Sasidharan, M.; Sundramoorthy, A. K. Gold nanoparticlesthiol-functionalized reduced graphene oxide coated electrochemical sensor system for selective detection of mercury ion. J. Electrochem. Soc. 2018, 165, B3046–B3053.

    Article  CAS  Google Scholar 

  57. Love, J. C.; Estroff, L. A.; Kriebel, J. K. Nuzzo R. G., Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.

    Article  CAS  Google Scholar 

  58. Malkhandi, S.; Yang, B.; Manohar, A. K.; Prakash, G. K. S.; Narayanan, S. R. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes. J. Am. Chem. Soc. 2013, 135, 347–353.

    Article  CAS  Google Scholar 

  59. Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat Mater. 2019, 18, 1222–1227.

    Article  CAS  Google Scholar 

  60. Ahmed, M. I.; Liu, C. W.; Zhao, Y.; Ren, W. H.; Chen, X. J.; Chen, S.; Zhao, C. Metal-sulfur linkages achieved by organic tethering of Ruthenium nanocrystals for enhanced electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 21465–21469.

    Article  CAS  Google Scholar 

  61. Wang, J. H.; Yang, H.; Liu, Q. Q.; Liu, Q.; Li, X. T.; Lv, X. Z.; Cheng, T.; Wu, H. B. Fastening Br ions at copper-molecule interface enables highly efficient electroreduction of CO2 to ethanol. ACS Energy Lett. 2021, 6, 437–444.

    Article  CAS  Google Scholar 

  62. Hammer, B.; Morikawa, Y.; Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 1996, 76, 2141–2144.

    Article  CAS  Google Scholar 

  63. Ma, D. W.; Zeng, Z. P.; Liu, L. L.; Huang, X. W.; Jia, Y. Computational evaluation of electrocatalytic nitrogen reduction on Tm single-, double-, and triple-atom catalysts (Tm = Mn, Fe, Co, Ni) based on graphdiyne monolayers. J. Phys. Chem. C 2019, 123, 19066–19076.

    Article  CAS  Google Scholar 

  64. Ma, D. W.; Zeng, Z. P.; Liu, L. L.; Jia, Y. Theoretical screening of the transition metal heteronuclear dimer anchored graphdiyne for electrocatalytic nitrogen reduction. J. Energy Chem. 2021, 54, 501–509.

    Article  Google Scholar 

  65. Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

    Article  CAS  Google Scholar 

  66. Du, Z. B.; Liang J.; Li S. X.; Xu, Z. Q.; Li, T. S.; Liu, Q.; Luo, Y.; Zhang, F.; Liu, Y.; Kong, Q. Q. et al. Alkylthiol surface engineering: an effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. J. Mater. Chem. A 2021, DOI: https://doi.org/10.1039/D1TA02424H.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072015), Shanghai Scientific and Technological Innovation Project (No. 18JC 1410604), and Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 20HASTIT028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Yang, Dongwei Ma or Xuping Sun.

Electronic Supplementary Material

12274_2021_3592_MOESM1_ESM.pdf

Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Liang, J., Wang, Y. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 15, 1039–1046 (2022). https://doi.org/10.1007/s12274-021-3592-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3592-8

Keywords

Navigation