Skip to main content
Log in

Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

NH3, derived from electrocatalytic nitrogen reduction reaction (NRR), is promising to satisfy the need of food production and serve as a carbon-free liquid energy carrier in the near future. Yet major challenges remain in enhancing NH3 yield rate and conversion efficiency of available electrocatalysts. This work achieved an ultrahigh electrocatalytic NH3 yield rate on the 0.50Fe-Bi2WO6 catalyst by a facile Fe-doped strategy. Up to 289 µg·h−1·mgcat−1 of NH3 formation rate was obtained at −0.75 V vs. RHE, which was reliably quantized by indophenol blue and 1H NMR methods. The impressive result is an order of magnitude higher than that of the reported Fe- and Bi-based catalysts, even more superior than the result of single atom Ru catalyst. The key of the outstanding NRR behaviors on the 0.50Fe-Bi2WO6 catalyst is the significant hydrogen evolution reaction (HER) suppression and the synergy between Bi and Fe, which can effectively modulate the electron distribution and accelerate the electron transport. This work endows a new insight to further explore the high-performance electrocatalysts toward NRR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, F.; Gerken, J. B.; Bates, D. M.; Kim, Y. J.; Stahl, S. S. Electrochemical strategy for hydrazine synthesis: Development and overpotential analysis of methods for oxidative N-N coupling of an ammonia surrogate. J. Am. Chem. Soc. 2020, 142, 12349–12356.

    Article  CAS  Google Scholar 

  2. Kim, S.; Loose, F.; Chirik, P. J. Beyond ammonia: Nitrogen-element bond forming reactions with coordinated dinitrogen. Chem. Rev. 2020, 120, 5637–5681.

    Article  CAS  Google Scholar 

  3. Zhang, G.; Xu, H.; Li, Y.; Xiang, C.; Ji, Q. H.; Liu, H. J.; Qu, J. H.; Li, J. H. Interfacial engineering of SeO ligands on tellurium featuring synergistic functionalities of bond activation and chemical states buffering toward electrocatalytic conversion of nitrogen to ammonia. Adv. Sci. 2019, 6, 1901627.

    Article  CAS  Google Scholar 

  4. Fang, Y.; Xue, Y. R.; Li, Y. J.; Yu, H. D.; Hui, L.; Liu, Y. X.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Wang, Z. Q., et al. Graphdiyne interface engineering: Highly active and selective ammonia synthesis. Angew. Chem., Int. Ed. 2020, 132, 13121–13127.

    Article  Google Scholar 

  5. Lv, X. S.; Wei, W.; Li, F. P.; Huang, B. B.; Dai, Y. Metal-free B@g-CN: Visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia. Nano Lett. 2019, 19, 6391–6399.

    Article  CAS  Google Scholar 

  6. Zhao, X.; Yao, C.; Chen, H.; Fu, Y. F.; Xiang, C. J.; He, S. H.; Zhou, X. H.; Zhang, H. B. In situ nano Au triggered by a metal boron organic polymer: Efficient electrochemical N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 20945–20951.

    Article  CAS  Google Scholar 

  7. Zheng, J. Y.; Lyu, Y. H.; Qiao, M.; Veder, J. P.; Marco, R. D.; Bradley, J.; Wang, R. L.; Li, Y. F.; Huang, A. B.; Jiang, S. P. et al. Tuning the electron localization of gold enables the control of nitrogen-to-ammonia fixation. Angew. Chem., Int. Ed. 2019, 58, 18604–18609.

    Article  CAS  Google Scholar 

  8. Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846–856.

    Article  CAS  Google Scholar 

  9. Greenlee, L. F. Recycling fertilizer. Nat. Energy 2020, 5, 557–558.

    Article  CAS  Google Scholar 

  10. Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

    Article  Google Scholar 

  11. Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

    Article  CAS  Google Scholar 

  12. Hao, Q.; Liu, C. W.; Jia, G. H.; Wang, Y.; Arandiyan, H.; Wei, W.; Ni, B. J. Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: State of the art and future prospects. Mater. Horiz. 2020, 7, 1014–1029.

    Article  CAS  Google Scholar 

  13. Di, J.; Xia, J. X.; Chisholm, M. F.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X. et al. Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 2019, 31, 1807576.

    Article  Google Scholar 

  14. Deng, P. L.; Wang, H. M.; Qi, R. J.; Zhu, J. X.; Chen, S. H.; Yang, F.; Zhou, L.; Qi, K.; Liu, H. F.; Xia, B. Y. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2020, 10, 743–750.

    Article  CAS  Google Scholar 

  15. Byun, S.; Jung, G.; Shi, Y. Y.; Lanza, M.; Shin, B. Aging of a vanadium precursor solution: Influencing material properties and photoelectrochemical water oxidation performance of solution-processed BiVO4 photoanodes. Adv. Funct. Mater. 2020, 30, 1806662.

    Article  CAS  Google Scholar 

  16. Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.

    Article  CAS  Google Scholar 

  17. Zhang, J.; Tian, X. Y.; Liu, M. J.; Guo, H.; Zhou, J. D.; Fang, Q. Y.; Liu, Z.; Wu, Q.; Lou, J. Cobalt-modulated molybdenum-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. J. Am. Chem. Soc. 2019, 141, 19269–19275.

    Article  CAS  Google Scholar 

  18. Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485.

    Article  CAS  Google Scholar 

  19. Fang, Y. J.; Yu, X. Y.; Lou, X. W. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv. Mater. 2018, 30, 1706668.

    Article  Google Scholar 

  20. Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

    Article  Google Scholar 

  21. Sun, H.; Min, Y. X.; Yang, W. J.; Lian, Y. B.; Lin, L. L.; Feng, K.; Deng, Z.; Chen, M. Z.; Zhong, J.; Xu, L. et al. Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting. ACS Catal. 2019, 9, 8882–8892.

    Article  CAS  Google Scholar 

  22. Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

    Article  CAS  Google Scholar 

  23. Meng, Q. Q.; Lv, C. D.; Sun, J. X.; Hong, W. Z.; Xing, W. N.; Qiang, L. S.; Chen, G.; Jin, X. L. High-efficiency Fe-mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction. Appl. Catal., B 2019, 256, 117781.

    Article  Google Scholar 

  24. Suryanto, B. H. R.; Kang, C. S. M.; Wang, D.; Xiao, C. L.; Zhou, F. L.; Azofra, L. M.; Cavallo, L.; Zhang, X. Y.; MacFarlane, D. R. Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energy Lett. 2018, 3, 1219–1224.

    Article  CAS  Google Scholar 

  25. Lazouski, N.; Schiffer, Z. J.; Williams, K.; Manthiram, K. Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule 2019, 3, 1127–1139.

    Article  CAS  Google Scholar 

  26. Chen, G. F.; Ren, S. Y.; Zhang, L. L.; Cheng, H.; Luo, Y. R.; Zhu, K. H.; Ding, L. X.; Wang, H. H. Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge. Small Methods 2019, 3, 1800337.

    Article  Google Scholar 

  27. Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.

    Article  CAS  Google Scholar 

  28. Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.

    Article  CAS  Google Scholar 

  29. Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

    Article  CAS  Google Scholar 

  30. Wang, Y. N.; Zhang, S. L.; Zhong, Q.; Zeng, Y. Q.; Ou, M.; Cai, W. Hydrothermal synthesis of novel uniform nanooctahedral Bi3(FeO4)(WO4)2 solid oxide and visible-light photocatalytic performance. Ind. Eng. Chem. Res. 2016, 55, 12539–12546.

    Article  CAS  Google Scholar 

  31. Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed. 2019, 58, 15541–15547.

    Article  CAS  Google Scholar 

  32. Chen, X. R.; Guo, Y. T.; Du, X. C.; Zeng, Y. S.; Chu, J. W.; Gong, C. H.; Huang, J. W.; Fan, C.; Wang, X. F.; Xiong, J. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv. Energy Mater. 2020, 10, 1903172.

    Article  CAS  Google Scholar 

  33. Zhao, Y. X.; Shi, R.; Bian, X. A.; Zhou, C.; Zhao, Y. F.; Zhang, S.; Wu, F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H., et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates?. Adv. Sci. 2019, 6, 1802109.

    Article  Google Scholar 

  34. Yang, X.; Kattel, S.; Nash, J.; Chang, X. X.; Lee, J. H.; Yan, Y. S.; Chen, J. G.; Xu, B. J. Quantification of active sites and elucidation of the reaction mechanism of the electrochemical nitrogen reduction reaction on vanadium nitride. Angew. Chem., Int. Ed. 2019, 58, 13768–13772.

    Article  CAS  Google Scholar 

  35. Wang, J.; Huang, B. L.; Ji, Y. J.; Sun, M. Z.; Wu, T.; Yin, R. G.; Zhu, X.; Li, Y. Y.; Shao, Q.; Huang, X. Q. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv. Mater. 2020, 32, 1907112.

    Article  CAS  Google Scholar 

  36. Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008.

    Article  CAS  Google Scholar 

  37. Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 µgNH3mgcat−1h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, e1803498.

    Article  Google Scholar 

  38. Yao, Y.; Zhu, S. Q.; Wang, H. J.; Li, H.; Shao, M. H. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 2018, 140, 1496–1501.

    Article  CAS  Google Scholar 

  39. Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202000381.

  40. Gao, X.; An, L.; Qu, D.; Jiang, W. S.; Chai, Y. X.; Sun, S. R.; Liu, X. Y.; Sun, Z. C. Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Sci. Bull. 2019, 64, 918–925.

    Article  CAS  Google Scholar 

  41. Feng, J. X.; Pan, H. Electronic state optimization for electrochemical N2 reduction reaction in aqueous solution. J. Mater. Chem. A 2020, 8, 13896–13915.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21675151, 21705145 and 21721003), and the Ministry of Science and Technology of China (No. 2016YFA0203203). (further details of the experimental section, corresponding calibration curves, control experiment, electrochemical measurement of contrast materials, N2H4 determination, EIS, SEM, TEM, XRD, XPS characterization, and so on) is available in the online version of this article at https://doi.org/10.1007/s12274-020-3276-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Huang, L., Fang, Y. et al. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res. 14, 2711–2716 (2021). https://doi.org/10.1007/s12274-020-3276-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3276-9

Keywords

Navigation