Skip to main content
Log in

Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although high-efficiency production of hydrogen peroxide (H2O2) can be realized separately by means of direct, electrochemical, and photocatalytic synthesis, developing versatile catalysts is particularly challenging yet desirable. Herein, for the first time we reported that palladium-sulphur nanocrystals (Pd-S NCs) can be adopted as robust and universal catalysts, which can realize the efficient O2 conversion by three methods. As a result, Pd-S NCs exhibit an excellent selectivity (89.5%) to H2O2 with high productivity (133.6 mol·kgcat−1h−1) in the direct synthesis, along with the significantly enhanced H2O2 production activity and stability via electrocatalytic and photocatalytic syntheses. It is demonstrated that the isolated Pd sites can enhance the adsorption of O2 and inhibit its O-O bond dissociation, improving H2O2 selectivity and reducing H2O2 degradation. Further study confirms that the difference in surface atom composition and arrangement is the key factor for different ORR mechanisms on Pd NCs and Pd-S NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson, N. M.; Pan, Y. T.; Shao, Y. T.; Zuo, J. M.; Yang, H.; Flaherty, D. W. Direct synthesis of H2O2 on AgPt octahedra: The importance of Ag-Pt coordination for high H2O2 selectivity. ACS Catal. 2018, 8, 2880–2889.

    Article  CAS  Google Scholar 

  2. Salmerón, I.; Plakas, K. V.; Sirés, I.; Oller, I.; Maldonado, M. I.; Karabelas, A. J.; Malato, S. Optimization of electrocatalytic H2O2 production at pilot plant scale for solar-assisted water treatment. Appl. Catal. B: Environ. 2019, 242, 327–336.

    Article  Google Scholar 

  3. Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.

    Article  CAS  Google Scholar 

  4. Ye, Z. H.; Guelfi, D. R. V.; Álvarez, G.; Alcaide, F.; Brillas, E.; Sirés, I. Enhanced electrocatalytic production of H2O2 at Co-based air-diffusion cathodes for the photoelectro-Fenton treatment of bronopol. Appl. Catal. B: Environ. 2019, 247, 191–199.

    Article  CAS  Google Scholar 

  5. De Faveri, G.; Ilyashenko, G.; Watkinson, M. Recent advances in catalytic asymmetric epoxidation using the environmentally benign oxidant hydrogen peroxide and its derivatives. Chem. Soc. Rev. 2011, 40, 1722–1760.

    Article  CAS  Google Scholar 

  6. Lane, B. S.; Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 2003, 103, 2457–2474.

    Article  CAS  Google Scholar 

  7. Li, H. B.; Zheng, B.; Pan, Z. Y.; Zong, B. N.; Qiao, M. H. Advances in the slurry reactor technology of the anthraquinone process for H2O2 production. Front. Chem. Sci. Eng. 2018, 12, 124–131.

    Article  CAS  Google Scholar 

  8. Iqbal, W.; Qiu, B. C.; Zhu, Q. H.; Xing, M. Y.; Zhang, J. L. Self-modified breaking hydrogen bonds to highly crystalline graphitic carbon nitrides nanosheets for drastically enhanced hydrogen production. Appl. Catal. B: Environ. 2018, 232, 306–313.

    Article  CAS  Google Scholar 

  9. Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

    Article  CAS  Google Scholar 

  10. Liu, Y. M.; Quan, X.; Fan, X. F.; Wang, H.; Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841.

    Article  CAS  Google Scholar 

  11. Guo, Y. Y.; Dai, C. N.; Lei, Z. G.; Chen, B. H.; Fang, X. C. Synthesis of hydrogen peroxide over Pd/SiO2/COR monolith catalysts by anthraquinone method. Catal. Today 2016, 276, 36–45.

    Article  CAS  Google Scholar 

  12. Kanungo, S.; Paunovic, V.; Schouten, J. C.; D’Angelo, M. F. N. Facile synthesis of catalytic AuPd nanoparticles within capillary microreactors using polyelectrolyte multilayers for the direct synthesis of H2O2. Nano Lett. 2017, 17, 6481–6486.

    Article  CAS  Google Scholar 

  13. Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 1802920.

    Article  Google Scholar 

  14. Yang, S.; Verdaguer-Casadevall, A., Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

    Article  CAS  Google Scholar 

  15. Dong, K.; Lei, Y.; Zhao, H. T.; Liang, J.; Ding, P.; Liu, Q.; Xu, Z. Q.; Lu, S. Y.; Li, Q.; Sun, X. P. Noble-metal-free electrocatalysts toward H2O2 production. J. Mater. Chem. A 2020, 8, 23123–23141.

    Article  CAS  Google Scholar 

  16. Wang, Z.; Li, Q. K.; Zhang, C. H.; Cheng, Z. H.; Chen, W. Y.; Mchugh, E. A.; Carter, R. A.; Yakobson, B. I.; Tour, J. M. Hydrogen peroxide generation with 100% faradaic efficiency on metal-free carbon black. ACS Catal. 2021, 11, 2454–2459.

    Article  CAS  Google Scholar 

  17. Wilson, N. M.; Flaherty, D. W. Mechanism for the direct synthesis of H2O2 on Pd clusters: Heterolytic reaction pathways at the liquidsolid interface. J. Am. Chem. Soc. 2016, 138, 574–586.

    Article  CAS  Google Scholar 

  18. Lari, G. M.; Puértolas, B.; Shahrokhi, M.; López, N.; Pérez-Ramírez, J. Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis: The key role of the ligand. Angew. Chem., Int. Ed. 2017, 56, 1775–1779.

    Article  CAS  Google Scholar 

  19. Vu, H. T. T.; Vo, V. L. N.; Chung, Y. M. Geometric, electronic, and synergistic effect in the sulfonated carbon-supported Pd catalysts for the direct synthesis of hydrogen peroxide. Appl. Catal. A: Gen. 2020, 607, 117867.

    Article  Google Scholar 

  20. Jin, Z.; Liu, Y. F.; Wang, L.; Wang, C. T.; Wu, Z. Y.; Zhu, Q. Y.; Wang, L. X.; Xiao, F. S. Direct synthesis of pure aqueous H2O2 solution within aluminosilicate zeolite crystals. ACS Catal. 2021, 11, 1946–1951.

    Article  CAS  Google Scholar 

  21. Han, G. H.; Lee, S. H.; Hwang, S. Y.; Lee, K. Y. Advanced development strategy of nano catalyst and DFT calculations for direct synthesis of hydrogen peroxide. Adv. Energy Mater. 2021, 2003121.

  22. Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

    Article  Google Scholar 

  23. Zheng, L. H.; Su, H. R.; Zhang, J. Z.; Walekar, L. S.; Molamahmood, H. V.; Zhou, B. X.; Long, M. C.; Hu, Y. H. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl. Catal. B: Environ. 2018, 239, 475–484.

    Article  CAS  Google Scholar 

  24. Kim, J. S.; Kim, H. K.; Kim, S. H.; Kim, I.; Yu, T.; Han, G. H.; Lee, K. Y.; Lee, J. C.; Ahn, J. P. Catalytically active Au layers grown on Pd nanoparticles for direct synthesis of H2O2: Lattice strain and charge-transfer perspective analyses. ACS Nano 2019, 13, 4761–4770.

    Article  CAS  Google Scholar 

  25. Lee, J. H.; Cho, H.; Park, S. O.; Hwang, J. M.; Hong, Y. R. N.; Sharma, P.; Jeon, W. C.; Cho, Y.; Yang, C.; Kwak, S. K. et al. High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Appl. Catal. B: Environ. 2021, 284, 119690.

    Article  CAS  Google Scholar 

  26. Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y.; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B: Environ. 2021, 289, 120035.

    Article  CAS  Google Scholar 

  27. Wu, S.; Yu, H. T.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380–14389.

    Article  CAS  Google Scholar 

  28. Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

    Article  CAS  Google Scholar 

  29. Burek, B. O.; Bahnemann, D. W.; Bloh, J. Z. Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catal. 2019, 9, 25–37.

    Article  CAS  Google Scholar 

  30. Wang, F.; Xia, C. G.; de Visser, S. P.; Wang, Y. How does the oxidation state of palladium surfaces affect the reactivity and selectivity of direct synthesis of hydrogen peroxide from hydrogen and oxygen gases? A density functional study. J. Am. Chem. Soc. 2019, 141, 901–910.

    Article  CAS  Google Scholar 

  31. Deschner, B. J.; Doronkin, D. E.; Sheppard, T. L.; Zimina, A.; Grunwaldt, J. D.; Dittmeyer, R. Effect of selectivity enhancers on the structure of palladium during high-pressure continuous-flow direct synthesis of hydrogen peroxide in ethanol. J. Phys. Chem. C 2021, 125, 3451–3462.

    Article  CAS  Google Scholar 

  32. Cai, H. Z.; Chen, B. B.; Zhang, X.; Deng, Y. C.; Xiao, D. Q.; Ma, D.; Shi, C. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 2021, 14, 122–130.

    Article  CAS  Google Scholar 

  33. Ding, R.; Liu, Y. D.; Rui, Z. Y.; Li, J.; Liu, J. G.; Zou, Z. G. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526.

    Article  CAS  Google Scholar 

  34. Lu, Y. Z.; Wang, J.; Peng, Y. C.; Fisher, A.; Wang, X. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700919.

    Article  Google Scholar 

  35. Bu, L. Z.; Feng, Y. G.; Yao, J. L.; Guo, S. J.; Guo, J.; Huang, X. Q. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Res. 2016, 9, 2811–2821.

    Article  CAS  Google Scholar 

  36. Zhou, R. F.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Determination of the electron transfer number for the oxygen reduction reaction: From theory to experiment. ACS Catal. 2016, 6, 4720–4728.

    Article  CAS  Google Scholar 

  37. Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 2016, 351, 965–968.

    Article  CAS  Google Scholar 

  38. Xu, H. X.; Cheng, D. J.; Gao, Y.; Zeng, X. C. Assessment of catalytic activities of gold nanoclusters with simple structure descriptors. ACS Catal. 2018, 8, 9702–9710.

    Article  CAS  Google Scholar 

  39. Yi, Y. H.; Xu, C.; Wang, L.; Yu, J.; Zhu, Q. R.; Sun, S. Q.; Tu, X.; Meng, C. G.; Zhang, J. L.; Guo, H. C. Selectivity control of H2/O2 plasma reaction for direct synthesis of high purity H2O2 with desired concentration. Chem. Eng. J. 2017, 313, 37–46.

    Article  CAS  Google Scholar 

  40. Gong, X. X.; Lewis, R. J.; Zhou, S.; Morgan, D. J.; Davies, T. E.; Liu, X.; Kiely, C. J.; Zong, B. N.; Hutchings, G. J. Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catal. Sci. Technol. 2020, 10, 4635–4644.

    Article  CAS  Google Scholar 

  41. Tsukamoto, D.; Shiro, A.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles. ACS Catal. 2012, 2, 599–603.

    Article  CAS  Google Scholar 

  42. Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

    Article  CAS  Google Scholar 

  43. Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.

    Article  CAS  Google Scholar 

  44. Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

    Article  CAS  Google Scholar 

  45. Feng, Y. G.; Yang, C. Y.; Fang, W.; Huang, B. L.; Shao, Q.; Huang, X. Q. Antipoisonedoxygen reduction by the interface modulated Pd@NiO core@shell. Nano Energy 2019, 58, 234–243.

    Article  CAS  Google Scholar 

  46. Zhang, J.; Qiao, M.; Li, Y. F.; Shao, Q.; Huang, X. Q. Highly active and selective electrocatalytic CO2 conversion enabled by core/shell Ag/(amorphous-Sn(IV)) nanostructures with tunable shell thickness. ACS Appl. Mater. Interfaces 2019, 11, 39722–39727.

    Article  CAS  Google Scholar 

  47. Zhang, J. B.; Xu, W. W.; Xu, L.; Shao, Q.; Huang, X. Q. Concavity tuning of intermetallic Pd-Pb nanocubes for selective semihydrogenation catalysis. Chem. Mater. 2018, 30, 6338–6345.

    Article  CAS  Google Scholar 

  48. Cao, K. L.; Yang, H.; Bai, S. X.; Xu, Y.; Yang, C. Y.; Wu, Y.; Xie, M.; Cheng, T.; Shao, Q.; Huang, X. Q. Efficient direct H2O2 synthesis enabled by PdPb nanorings via inhibiting the O-O bond cleavage in O2 and H2O2. ACS Catal. 2021, 11, 1106–1118.

    Article  CAS  Google Scholar 

  49. Xu, Y.; Bian, W. Y.; Pan, Q.; Chu, M. Y.; Cao, M. H.; Li, Y. Y.; Gong, Z. M.; Wang, R.; Cui, Y.; Lin, H. P. et al. Revealing the active sites of Pd nanocrystals for propyne semihydrogenation: From theory to experiment. ACS Catal. 2019, 9, 8471–8480.

    Article  CAS  Google Scholar 

  50. Zeng, Y. Q.; Wang, T. X.; Zhang, S. L.; Wang, Y. N.; Zhong, Q. Solgel synthesis of CuO-TiO2 catalyst with high dispersion CuO species for selective catalytic oxidation of NO. Appl. Surf. Sci. 2017, 411, 227–234.

    Article  CAS  Google Scholar 

  51. Wang, S. L.; Gao, K. G.; Li, W.; Zhang, J. L. Effect of Zn addition on the direct synthesis of hydrogen peroxide over supported palladium catalysts. Appl. Catal. A: Gen. 2017, 531, 89–95.

    Article  CAS  Google Scholar 

  52. Gao, F.; Wang, L. Y.; Goodman, D. W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: The critical role of contiguous Pd atoms. J. Am. Chem. Soc. 2009, 131, 5734–5735.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Nos. 2017YFA0208200 and 2016YFA0204100), the National Natural Science Foundation of China (No. 22025108), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the start-up supports from Xiamen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingzheng Bu, Jun Cheng or Xiaoqing Huang.

Electronic Supplementary Material

12274_2021_3786_MOESM1_ESM.pdf

Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Yang, C., Le, J. et al. Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2. Nano Res. 15, 1861–1867 (2022). https://doi.org/10.1007/s12274-021-3786-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3786-0

Keywords

Navigation