Skip to main content
Log in

Emerging Atomically Precise Metal Nanoclusters and Ultrasmall Nanoparticles for Efficient Electrochemical Energy Catalysis: Synthesis Strategies and Surface/Interface Engineering

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Atomically precise metal nanocluster and ultrasmall nanoparticle catalysts have garnered significant interest in electrocatalysis applications due to their unique geometric and electronic structures. As an intermediate state between single-atom catalysts (SACs) and nanoparticles in size, nanoclusters with specific low nuclearity provide designated metallic states with multiple atoms or surface sites for the adsorption and transformation of reactants/intermediates. The unique catalytic properties of nanoclusters offer a novel platform for designing effective and efficient electrocatalysts, potentially surpassing the SACs in certain catalytic reactions. This review summarizes and discusses the latest progress of nanoclusters and ultrasmall nanoparticles for various electrocatalysis applications, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), CO2 reduction reaction (CO2RR), nitrogen reduction reaction (NRR), hydrogen evolution reaction (HER), various chemicals oxidation reaction (COR), etc. Specifically, this review highlights surface/interface chemical modification strategies and structure-properties relationships, drawing from the atomic-level insights to determine electrocatalytic performance. Lastly, we present the challenges and opportunities associated with nanocluster or ultrasmall nanoparticle electrocatalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [38]. Copyright 2019, Springer. b Schematic illustration of the three parts (anchoring point, ligand body, and functional group) of the protecting ligands on the cluster surface. Reproduced with permission from Ref. [37]. Copyright© 2021, Wiley–VCH. c Modulating electronic structures of MOFs via introducing missing linkers. Reproduced with permission from Ref. [38]. Copyright© 2019, Springer. d Conceptual image of reducing-capsule cluster synthesis and size control. Reproduced with permission from Ref. [39]. Copyright© 2020, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [63]. Copyright© 2022, American Association for the Advancement of Science. c The schematic diagram of the thermal shock heating method. Reproduced with permission from Ref. [65]. Copyright© 2019, Springer. d Schematic illustration of the sulfur-stabilizing process. Reproduced with permission from Ref. [66]. Copyright© 2021, Springer

Fig. 4
Fig. 5
Fig. 6

Reproduced with permission from Ref. [94]. Copyright 2022, Springer. e Schematic model of the catalyst preparation process. f HAADF-STEM image of PtNC/S–C. (g,h) Difference charge density analysis of Pt38/S-graphene and Pt1/S-graphene system. i Mass activity at an overpotential of 20 mV. Reproduced with permission from Ref. [103]. Copyright© 2019, Springer

Fig. 7

Reproduced with permission from Ref. [26]. Copyright© 2020, Springer. f, g Perspective views of the Cu8 NC structures for the cube-shaped Cu8-1 and ditetrahedron-shaped Cu8-2 NCs. h FEs for HCOOH, CO, and H2 at potentials of − 0.9 and − 1.0 V. Reproduced with permission from Ref. [106]. Copyright© 2022, Wiley–VCH

Fig. 8
Fig. 9

Reproduced with permission from Ref. [127]. Copyright© 2021, American Chemical Society. f Schematic illustration for the mechanism of enhanced NRR activity by introducing Co single clusters in nitrogen-doped carbon. g Dark-field TEM image of CoSC–N–C showing highly dispersed Co single clusters. h NH3 yield rates at each given potential of CoSC–N–C, CoNP–N–C, and N–C. i Free energy diagram and models on Co4–N4/C. Reproduced with permission from Ref. [135]. Copyright© 2020, Oxford University Press

Fig. 10

Reproduced with permission from Ref. [143]. Copyright 2022, Wiley–VCH. d ,e HAADF-STEM images Pt5/HMCS. f Schematic illustration of the synthetic procedure of Pt5/HMCS. Reproduced with permission from Ref. [128]. Copyright 2019, Wiley–VCH

Fig. 11

Reproduced with permission from Ref. [63]. Copyright© 2022, American Association for the Advancement of Science. b Schematic illustration of the oxidation process of HEA NPs. Reproduced with permission from Ref. [161]. Copyright© 2020, American Chemical Society. c HAADF-STEM images of the PtPdRuRhOsIr. d ,e Comparison of the ethanol oxidation reaction (EOR). Reproduced with permission from Ref. [151]. Copyright© 2020, American Chemical Society. f Elemental mappings of Pt18Ni26Fe15Co14Cu27 nanoparticles. g Methanol oxidation reaction (MOR) performance of the Pt18Ni26Fe15Co14Cu27/C. h Energetic pathway of the alkaline MOR. Reproduced with permission from Ref. [155]. Copyright© 2020, Springer

Fig. 12

Reproduced with permission from Ref. [166]. Copyright© 2022, American Chemical Society

Fig. 13

Reproduced with permission from Ref. [188]. Copyright© 2021, American Chemical Society. d The proposed chemical mechanism of the synthetic procedure. e, f FT-EXAFS spectra of samples at Mo K-edge and W L3-edge. g The polarization curves of samples in 0.5 mol L−1 H2SO4. h Optimized geometries and possible active sites for H adsorption on W1Mo1–NG. i ΔGH diagrams of W1Mo1–NG, Mo2–NG, and W2–NG. Reproduced with permission from Ref. [185]. Copyright© 2020, American Association for the Advancement of Science

Fig. 14

Similar content being viewed by others

References

  1. Dong, H.M., Xue, M.G., Xiao, Y.J., et al.: Do carbon emissions impact the health of residents? Considering China’s industrialization and urbanization. Sci. Total. Environ. 758, 143688 (2021). https://doi.org/10.1016/j.scitotenv.2020.143688

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Bai, H.W., Chen, D., Ma, Q.L., et al.: Atom doping engineering of transition metal phosphides for hydrogen evolution reactions. Electrochem. Energy Rev. 5, 24 (2022). https://doi.org/10.1007/s41918-022-00161-7

    Article  CAS  Google Scholar 

  3. Niu, W.H., Yang, Y.: Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett. 3, 2796–2815 (2018). https://doi.org/10.1021/acsenergylett.8b01594

    Article  CAS  Google Scholar 

  4. Browne, M.P., Redondo, E., Pumera, M.: 3D printing for electrochemical energy applications. Chem. Rev. 120, 2783–2810 (2020). https://doi.org/10.1021/acs.chemrev.9b00783

    Article  CAS  PubMed  Google Scholar 

  5. Wu, H.M., Feng, C.Q., Zhang, L., et al.: Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4, 473–507 (2021). https://doi.org/10.1007/s41918-020-00086-z

    Article  CAS  Google Scholar 

  6. Gao, J.J., Tao, H.B., Liu, B.: Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 33, 2003786 (2021). https://doi.org/10.1002/adma.202003786

    Article  CAS  Google Scholar 

  7. Li, F., Han, G.F., Baek, J.B.: Active site engineering in transition metal based electrocatalysts for green energy applications. Acc. Mater. Res. 2, 147–158 (2021). https://doi.org/10.1021/accountsmr.0c00110

    Article  CAS  Google Scholar 

  8. Guo, T., Li, L., Wang, Z.: Recent development and future perspectives of amorphous transition metal–based electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 12, 2200827 (2022). https://doi.org/10.1002/aenm.202200827

    Article  CAS  Google Scholar 

  9. Liu, L.C., Corma, A.: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). https://doi.org/10.1021/acs.chemrev.7b00776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo, Y., Mei, S., Yuan, K., et al.: Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect. ACS Catal. 8, 6203–6215 (2018). https://doi.org/10.1021/acscatal.7b04469

    Article  CAS  Google Scholar 

  11. Liu, D.B., He, Q., Ding, S.Q., et al.: Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater. 10, 2001482 (2020). https://doi.org/10.1002/aenm.202001482

    Article  CAS  Google Scholar 

  12. Wu, T.Z., Han, M.Y., Xu, Z.J.: Size effects of electrocatalysts: more than a variation of surface area. ACS Nano 16, 8531–8539 (2022). https://doi.org/10.1021/acsnano.2c04603

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, M., Bao, S.J., Bard, A.J.: Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J. Am. Chem. Soc. 141, 7327–7332 (2019). https://doi.org/10.1021/jacs.8b13366

    Article  CAS  PubMed  Google Scholar 

  14. Lopes, P.P., Li, D.G., Lv, H.F., et al.: Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. Nat. Mater. 19, 1207–1214 (2020). https://doi.org/10.1038/s41563-020-0735-3

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Xia, C., Qiu, Y.R., Xia, Y., et al.: General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021). https://doi.org/10.1038/s41557-021-00734-x

    Article  CAS  PubMed  Google Scholar 

  16. Wu, M.J., Zhang, G.X., Wang, W.C., et al.: Electronic metal–support interaction modulation of single-atom electrocatalysts for rechargeable zinc-air batteries. Small Meth. 6, 2100947 (2022). https://doi.org/10.1002/smtd.202100947

    Article  CAS  Google Scholar 

  17. Yang, M.X., Hou, Z.X., Zhang, X., et al.: Unveiling the origins of selective oxidation in single-atom catalysis via Co-N4-C intensified radical and nonradical pathways. Environ. Sci. Technol. 56, 11635–11645 (2022). https://doi.org/10.1021/acs.est.2c01261

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Jin, X.X., Wang, R.Y., Zhang, L.X., et al.: Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem. 132, 6894–6898 (2020). https://doi.org/10.1002/ange.201914565

    Article  ADS  Google Scholar 

  19. Li, X.L., Xiang, Z.H.: Identifying the impact of the covalent-bonded carbon matrix to FeN4 sites for acidic oxygen reduction. Nat. Commun. 13, 57 (2022). https://doi.org/10.1038/s41467-021-27735-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong, F., Wu, M.J., Chen, Z.S., et al.: Atomically dispersed transition metal–nitrogen–carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2022). https://doi.org/10.1007/s40820-021-00768-3

    Article  ADS  CAS  Google Scholar 

  21. Zhang, B.X., Chen, Y.P., Wang, J.M., et al.: Supported sub-nanometer clusters for electrocatalysis applications. Adv. Funct. Mater. 32, 2202227 (2022). https://doi.org/10.1002/adfm.202202227

    Article  CAS  Google Scholar 

  22. Ji, S.F., Chen, Y.J., Fu, Q., et al.: Confined pyrolysis within metal–organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 139, 9795–9798 (2017). https://doi.org/10.1021/jacs.7b05018

    Article  CAS  PubMed  Google Scholar 

  23. Kang, X., Li, Y.W., Zhu, M.Z., et al.: Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem. Soc. Rev. 49, 6443–6514 (2020). https://doi.org/10.1039/c9cs00633h

    Article  CAS  PubMed  Google Scholar 

  24. Jin, R.C., Li, G., Sharma, S., et al.: Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 121, 567–648 (2021). https://doi.org/10.1021/acs.chemrev.0c00495

    Article  CAS  PubMed  Google Scholar 

  25. Kwak, K., Lee, D.: Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 52, 12–22 (2019). https://doi.org/10.1021/acs.accounts.8b00379

    Article  CAS  PubMed  Google Scholar 

  26. Yao, C.H., Guo, N., Xi, S.B., et al.: Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 11, 4389 (2020). https://doi.org/10.1038/s41467-020-18080-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pérez-Ramírez, J., López, N.: Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019). https://doi.org/10.1038/s41929-019-0376-6

    Article  Google Scholar 

  28. Jin, Y., Zhang, C., Dong, X.Y., et al.: Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 50, 2297–2319 (2021). https://doi.org/10.1039/d0cs01393e

    Article  CAS  PubMed  Google Scholar 

  29. Dong, C.Y., Li, Y.L., Cheng, D.Y., et al.: Supported metal clusters: fabrication and application in heterogeneous catalysis. ACS Catal. 10, 11011–11045 (2020). https://doi.org/10.1021/acscatal.0c02818

    Article  CAS  Google Scholar 

  30. Schubert, U.: Cluster-based inorganic–organic hybrid materials. Chem. Soc. Rev. 40, 575–582 (2011). https://doi.org/10.1039/c0cs00009d

    Article  CAS  PubMed  Google Scholar 

  31. Yang, D., Babucci, M., Casey, W.H., et al.: The surface chemistry of metal oxide clusters: from metal-organic frameworks to minerals. ACS Cent. Sci. 6, 1523–1533 (2020). https://doi.org/10.1021/acscentsci.0c00803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo, Y., Wang, M., Zhu, Q., et al.: Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat. Catal. 5, 766–776 (2022). https://doi.org/10.1038/s41929-022-00839-7

    Article  ADS  CAS  Google Scholar 

  33. Rong, H.P., Ji, S.F., Zhang, J.T., et al.: Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 11, 5884 (2020). https://doi.org/10.1038/s41467-020-19571-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, Y.Y., Xie, Z.Y., Jiang, J.X., et al.: Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 3, 454–462 (2020). https://doi.org/10.1038/s41929-020-0446-9

    Article  CAS  Google Scholar 

  35. Feigerle, C.S., Bililign, S., Miller, J.C.: Nanochemistry: chemical reactions of iron and benzene within molecular clusters. J. Nanopart. Res. 2, 147–155 (2000). https://doi.org/10.1023/a:1010034122603

    Article  ADS  CAS  Google Scholar 

  36. Zhao, X., Wang, F.L., Kong, X.P., et al.: Subnanometric Cu clusters on atomically Fe-doped MoO2 for furfural upgrading to aviation biofuels. Nat. Commun. 13, 2591 (2022). https://doi.org/10.1038/s41467-022-30345-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, B.H., Chen, J.S., Cao, Y.T., et al.: Ligand design in ligand-protected gold nanoclusters. Small 17, 2004381 (2021). https://doi.org/10.1002/smll.202004381

    Article  CAS  Google Scholar 

  38. Xue, Z.Q., Liu, K., Liu, Q.L., et al.: Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10, 5048 (2019). https://doi.org/10.1038/s41467-019-13051-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamamoto, K., Imaoka, T., Tanabe, M., et al.: New horizon of nanoparticle and cluster catalysis with dendrimers. Chem. Rev. 120, 1397–1437 (2020). https://doi.org/10.1021/acs.chemrev.9b00188

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, L., Si, R.T., Liu, H.S., et al.: Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019). https://doi.org/10.1038/s41467-019-12887-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, B.H., Zhao, G.Q., Zhang, B.X., et al.: Lattice-confined Ir clusters on Pd nanosheets with charge redistribution for the hydrogen oxidation reaction under alkaline conditions. Adv. Mater. 33, 2105400 (2021). https://doi.org/10.1002/adma.202105400

    Article  CAS  Google Scholar 

  42. Tian, S.B., Wang, B.X., Gong, W.B., et al.: Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 12, 3181 (2021). https://doi.org/10.1038/s41467-021-23517-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tian, S.B., Fu, Q., Chen, W.X., et al.: Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9, 2353 (2018). https://doi.org/10.1038/s41467-018-04845-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Z.Z., Ikeda, T., Murayama, H., et al.: Anchored palladium complex-generated clusters on zirconia: efficiency in reductive N-alkylation of amines with carbonyl compounds under hydrogen atmosphere. Chem. 17, 2101243 (2022). https://doi.org/10.1002/asia.202101243

    Article  CAS  Google Scholar 

  45. Liu, J.C., Xiao, H., Li, J.: Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. J. Am. Chem. Soc. 142, 3375–3383 (2020). https://doi.org/10.1021/jacs.9b06808

    Article  CAS  PubMed  Google Scholar 

  46. Shen, Y., Bo, X.K., Tian, Z.F., et al.: Fabrication of highly dispersed/active ultrafine Pd nanoparticle supported catalysts: a facile solvent-free in situ dispersion/reduction method. Green Chem. 19, 2646–2652 (2017). https://doi.org/10.1039/c7gc00262a

    Article  CAS  Google Scholar 

  47. Hou, C.C., Wang, H.F., Li, C.X., et al.: From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 13, 1658–1693 (2020). https://doi.org/10.1039/c9ee04040d

    Article  CAS  Google Scholar 

  48. Karayilan, M., Brezinski, W.P., Clary, K.E., et al.: Catalytic metallopolymers from [2Fe-2S] clusters: artificial metalloenzymes for hydrogen production. Angew. Chem. Int. Ed. 58, 7537–7550 (2019). https://doi.org/10.1002/anie.201813776

    Article  CAS  Google Scholar 

  49. Li, J., Huang, H.L., Xue, W.J., et al.: Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 4, 719–729 (2021). https://doi.org/10.1038/s41929-021-00665-3

    Article  CAS  Google Scholar 

  50. Yao, K.L., Wang, H.B., Yang, X.T., et al.: Metal–organic framework derived dual-metal sites for electroreduction of carbon dioxide to HCOOH. Appl. Catal. B Environ. 311, 121377 (2022). https://doi.org/10.1016/j.apcatb.2022.121377

    Article  CAS  Google Scholar 

  51. Chen, S.R., Cui, M., Yin, Z.H., et al.: Single-atom and dual-atom electrocatalysts derived from metal organic frameworks: current progress and perspectives. Chemsuschem 14, 73–93 (2021). https://doi.org/10.1002/cssc.202002098

    Article  CAS  PubMed  Google Scholar 

  52. Jiao, L., Jiang, H.L.: Metal-organic-framework-based single-atom catalysts for energy applications. Chem 5, 786–804 (2019). https://doi.org/10.1016/j.chempr.2018.12.011

    Article  CAS  Google Scholar 

  53. Wei, Y.S., Sun, L.M., Wang, M., et al.: Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. 59, 16013–16022 (2020). https://doi.org/10.1002/anie.202007221

    Article  CAS  Google Scholar 

  54. Guo, X., Wan, X., Liu, Q.T., et al.: Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience 2, 304–310 (2022). https://doi.org/10.1016/j.esci.2022.04.002

    Article  Google Scholar 

  55. Liu, X., Jia, S.F., Yang, M., et al.: Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation. Nat. Commun. 11, 4240 (2020). https://doi.org/10.1038/s41467-020-18076-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, B., Qin, Y.: Interface tailoring of heterogeneous catalysts by atomic layer deposition. ACS Catal. 8, 10064–10081 (2018). https://doi.org/10.1021/acscatal.8b02659

    Article  CAS  Google Scholar 

  57. Lu, Y.Y., Zhu, T.Y., van den Bergh, W., et al.: A high performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers. Angew. Chem. 132, 17152–17159 (2020). https://doi.org/10.1002/ange.202006171

    Article  ADS  Google Scholar 

  58. Shen, T., Wang, S., Zhao, T.H., et al.: Recent advances of single-atom-alloy for energy electrocatalysis. Adv. Energy Mater. 12, 2201823 (2022). https://doi.org/10.1002/aenm.202201823

    Article  CAS  Google Scholar 

  59. Koy, M., Bellotti, P., Das, M., et al.: N-Heterocyclic carbenes as tunable ligands for catalytic metal surfaces. Nat. Catal. 4, 352–363 (2021). https://doi.org/10.1038/s41929-021-00607-z

    Article  CAS  Google Scholar 

  60. Du, Y.X., Sheng, H.T., Astruc, D., et al.: Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120, 526–622 (2020). https://doi.org/10.1021/acs.chemrev.8b00726

    Article  CAS  PubMed  Google Scholar 

  61. Yao, Y.G., Huang, Z.N., Li, T.Y., et al.: High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl. Acad. Sci. U.S.A. 117, 6316–6322 (2020). https://doi.org/10.1073/pnas.1903721117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi, W.H., Liu, H.W., Li, Z.Z., et al.: High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis. SusMat 2, 186–196 (2022). https://doi.org/10.1002/sus2.56

    Article  CAS  Google Scholar 

  63. Yao, Y.G., Dong, Q., Brozena, A., et al.: High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery. Science 376, eabn3103 (2022). https://doi.org/10.1126/science.abn3103

    Article  CAS  PubMed  Google Scholar 

  64. Yao, Y.G., Huang, Z.N., Xie, P.F., et al.: Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018). https://doi.org/10.1126/science.aan5412

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Yao, Y.G., Huang, Z.N., Xie, P.F., et al.: High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019). https://doi.org/10.1038/s41565-019-0518-7

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Yin, P., Luo, X., Ma, Y.F., et al.: Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nat. Commun. 12, 3135 (2021). https://doi.org/10.1038/s41467-021-23426-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, Z.L., Su, J., Matias, A.S., et al.: Enhanced and stabilized hydrogen production from methanol by ultrasmall Ni nanoclusters immobilized on defect-rich h-BN nanosheets. Proc. Natl. Acad. Sci. U.S.A. 117, 29442–29452 (2020). https://doi.org/10.1073/pnas.2015897117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reddy, K.P., Deshpande, P.A.: Density functional theory study of the immobilization and hindered surface migration of Pd3 and Pd4 nanoclusters over defect-ridden graphene: implications for heterogeneous catalysis. ACS Appl. Nano Mater. 4, 9068–9079 (2021). https://doi.org/10.1021/acsanm.1c01661

    Article  CAS  Google Scholar 

  69. Lin, Q.W., Zhang, J., Kong, D.B., et al.: Deactivating defects in graphenes with Al2O3 nanoclusters to produce long-life and high-rate sodium-ion batteries. Adv. Energy Mater. 9, 1803078 (2019). https://doi.org/10.1002/aenm.201803078

    Article  CAS  Google Scholar 

  70. Dong, Y., Wang, Y., Tian, Z.Q., et al.: Enhanced catalytic performance of Pt by coupling with carbon defects. Innov. 2, 100161 (2021). https://doi.org/10.1016/j.xinn.2021.100161

    Article  CAS  Google Scholar 

  71. Cheng, Q.Q., Hu, C.G., Wang, G.L., et al.: Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution. J. Am. Chem. Soc. 142, 5594–5601 (2020). https://doi.org/10.1021/jacs.9b11524

    Article  CAS  PubMed  Google Scholar 

  72. Dai, Y.Q., Lu, P., Cao, Z.M., et al.: The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 47, 4314–4331 (2018). https://doi.org/10.1039/c7cs00650k

    Article  CAS  PubMed  Google Scholar 

  73. Cheng, Y., Wu, X., Veder, J.P., et al.: Tuning the electrochemical property of the ultrafine metal–oxide nanoclusters by iron phthalocyanine as efficient catalysts for energy storage and conversion. Energy Environ. Mater. 2, 5–17 (2019). https://doi.org/10.1002/eem2.12029

    Article  CAS  Google Scholar 

  74. Li, N., Shang, Y.X., Xu, R., et al.: Precise organization of metal and metal oxide nanoclusters into arbitrary patterns on DNA origami. J. Am. Chem. Soc. 141, 17968–17972 (2019). https://doi.org/10.1021/jacs.9b09308

    Article  CAS  PubMed  Google Scholar 

  75. Ueda, M., Goo, Z.L., Minami, K., et al.: Structurally precise silver sulfide nanoclusters protected by rhodium(III) octahedra with aminothiolates. Angew. Chem. Int. Ed. 58, 14673–14678 (2019). https://doi.org/10.1002/anie.201906425

    Article  CAS  Google Scholar 

  76. Wang, X., Wang, X.L., Lv, J., et al.: 0D/1D heterostructure for efficient electrocatalytic CO2-to-C1 conversion by ultra-small cluster-based multi-metallic sulfide nanoparticles and MWCNTs. Chem. Eng. J. 422, 130045 (2021). https://doi.org/10.1016/j.cej.2021.130045

    Article  ADS  CAS  Google Scholar 

  77. Pan, X.N., Xi, B.J., Lu, H.B., et al.: Molybdenum oxynitride atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical microspheres for efficient sodium storage. Nano-Micro Lett. 14, 163 (2022). https://doi.org/10.1007/s40820-022-00893-7

    Article  ADS  CAS  Google Scholar 

  78. Chang, X.Q., Ma, Y.F., Yang, M., et al.: In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Energy Storage Mater. 23, 358–366 (2019). https://doi.org/10.1016/j.ensm.2019.04.039

    Article  Google Scholar 

  79. Liu, Y.J., Xie, X.L., Zhu, G.X., et al.: Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution. J. Mater. Chem. A 7, 15851–15861 (2019). https://doi.org/10.1039/c9ta03825f

    Article  CAS  Google Scholar 

  80. Jing, W., Shen, H., Qin, R., et al.: Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: from atomically dispersed catalysts to atomically precise clusters. Chem. Rev. 123, 5948–6002 (2023). https://doi.org/10.1021/acs.chemrev.2c00569

    Article  CAS  PubMed  Google Scholar 

  81. Mitchell, S., Pérez-Ramírez, J.: Atomically precise control in the design of low-nuclearity supported metal catalysts. Nat. Rev. Mater. 6, 969–985 (2021). https://doi.org/10.1038/s41578-021-00360-6

    Article  ADS  Google Scholar 

  82. Chen, S., Chen, Z.N., Fang, W.H., et al.: Ag10Ti28-oxo cluster containing single-atom silver sites: atomic structure and synergistic electronic properties. Angew. Chem. 131, 11048–11051 (2019). https://doi.org/10.1002/ange.201904680

    Article  ADS  Google Scholar 

  83. Chen, J.J., Li, X.N., Chen, Q., et al.: Neutral Au1-doped cluster catalysts AuTi2O3–6 for CO oxidation by O2. J. Am. Chem. Soc. 141, 2027–2034 (2019). https://doi.org/10.1021/jacs.8b11118

    Article  CAS  PubMed  Google Scholar 

  84. Zhu, J.W., Lu, R.H., Shi, W.J., et al.: Epitaxially grown Ru clusters-nickel nitride heterostructure advances water electrolysis kinetics in alkaline and seawater media. Energy Environ. Sci. 6, 12318 (2023). https://doi.org/10.1002/eem2.12318

    Article  CAS  Google Scholar 

  85. Lv, L.Y., Tang, B., Ji, Q.Q., et al.: Highly exposed NiFeOx nanoclusters supported on boron doped carbon nanotubes for electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 34, 107524 (2023). https://doi.org/10.1016/j.cclet.2022.05.038

    Article  CAS  Google Scholar 

  86. Dai, L.X., Shen, Y.H., Chen, J.Z., et al.: MXene-supported, atomic-layered iridium catalysts created by nanoparticle re-dispersion for efficient alkaline hydrogen evolution. Small 18, 2105226 (2022). https://doi.org/10.1002/smll.202105226

    Article  CAS  Google Scholar 

  87. Lin, L., He, X.Y., Zhang, X.G., et al.: A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate. Angew. Chem. 135, 2214959 (2023). https://doi.org/10.1002/ange.202214959

    Article  Google Scholar 

  88. Gerber, I.C., Serp, P.: A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 120, 1250–1349 (2020). https://doi.org/10.1021/acs.chemrev.9b00209

    Article  CAS  PubMed  Google Scholar 

  89. van Deelen, T.V., Mejía, C.H., de Jong, K.D.: Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019). https://doi.org/10.1038/s41929-019-0364-x

    Article  CAS  Google Scholar 

  90. Zhao, R.Y., Wang, Y.D., Ji, G.P., et al.: Partially nitrided Ni nanoclusters achieve energy-efficient electrocatalytic CO2 reduction to CO at ultralow overpotential. Adv. Mater. 35, 2205262 (2023). https://doi.org/10.1002/adma.202205262

    Article  CAS  Google Scholar 

  91. Yan, X.C., Jia, Y., Wang, K., et al.: Controllable synthesis of Fe–N4 species for acidic oxygen reduction. Carbon Energy 2, 452–460 (2020). https://doi.org/10.1002/cey2.47

    Article  CAS  Google Scholar 

  92. Zhang, G., Yang, X., Dubois, M., et al.: Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH3 catalyst. Energy Environ. Sci. 12, 3015–3037 (2019). https://doi.org/10.1039/c9ee00867e

    Article  CAS  Google Scholar 

  93. Dodelet, J.P., Glibin, V., Zhang, G., et al.: Reply to the “Comment on ‘Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH3 catalyst’” by Xi Yin, Edward F. Holby and Piotr Zelenay. Energy Environ. Sci. 14, 1034–1041 (2021). https://doi.org/10.1039/d0ee03431b

    Article  Google Scholar 

  94. Wan, X., Liu, Q.T., Liu, J.Y., et al.: Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nat. Commun. 13, 2963 (2022). https://doi.org/10.1038/s41467-022-30702-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ao, X., Zhang, W., Li, Z.S., et al.: Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 13, 11853–11862 (2019). https://doi.org/10.1021/acsnano.9b05913

    Article  CAS  PubMed  Google Scholar 

  96. Wei, X., Song, S., Cai, W., et al.: Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 9, 181–197 (2023). https://doi.org/10.1016/j.chempr.2022.10.001

    Article  CAS  Google Scholar 

  97. Liu, H., Jiang, L.Z., Khan, J., et al.: Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem. 135, 2214988 (2023). https://doi.org/10.1002/ange.202214988

    Article  Google Scholar 

  98. Sun, F., Li, F., Tang, Q.: Spin state as a participator for demetalation durability and activity of Fe–N–C electrocatalysts. J. Phys. Chem. C 126, 13168–13181 (2022). https://doi.org/10.1021/acs.jpcc.2c03518

    Article  CAS  Google Scholar 

  99. Chen, Z.Y., Niu, H., Ding, J., et al.: Unraveling the origin of sulfur-doped Fe–N–C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning. Angew. Chem. 133, 25608–25614 (2021). https://doi.org/10.1002/ange.202110243

    Article  ADS  Google Scholar 

  100. Xue, D.P., Yuan, P.F., Jiang, S., et al.: Altering the spin state of Fe–N–C through ligand field modulation of single-atom sites boosts the oxygen reduction reaction. Nano Energy 105, 108020 (2023). https://doi.org/10.1016/j.nanoen.2022.108020

    Article  CAS  Google Scholar 

  101. Gupta, S., Zhao, S., Wang, X.X., et al.: Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon. ACS Catal. 7, 8386–8393 (2017). https://doi.org/10.1021/acscatal.7b02949

    Article  CAS  Google Scholar 

  102. Li, J.Z., Chen, M.J., Cullen, D.A., et al.: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8

    Article  CAS  Google Scholar 

  103. Yan, Q.Q., Wu, D.X., Chu, S.Q., et al.: Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 10, 4977 (2019). https://doi.org/10.1038/s41467-019-12851-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gao, T.T., Tang, X.M., Li, X.Q., et al.: Understanding the atomic and defective interface effect on ruthenium clusters for the hydrogen evolution reaction. ACS Catal. 13, 49–59 (2023). https://doi.org/10.1021/acscatal.2c04586

    Article  CAS  Google Scholar 

  105. Zhao, Y.F., Kumar, P.V., Tan, X., et al.: Modulating Pt–O–Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 13, 2430 (2022). https://doi.org/10.1038/s41467-022-30155-4

  106. Liu, L.J., Wang, Z.Y., Wang, Z.Y., et al.: Mediating CO2 electroreduction activity and selectivity over atomically precise copper clusters. Angew. Chem. 134, 2205626 (2022). https://doi.org/10.1002/ange.202205626

    Article  Google Scholar 

  107. Liu, Y.Q., Qiu, Z.Y., Zhao, X., et al.: Trapped copper in [6]cycloparaphenylene: a fully-exposed Cu7 single cluster for highly active and selective CO electro-reduction. J. Mater. Chem. A 9, 25922–25926 (2021). https://doi.org/10.1039/d1ta06688a

    Article  CAS  Google Scholar 

  108. Gao, Z.H., Wei, K.C., Wu, T., et al.: A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 144, 5258–5262 (2022). https://doi.org/10.1021/jacs.2c00725

    Article  CAS  PubMed  Google Scholar 

  109. Tang, Q., Lee, Y.J., Li, D.Y., et al.: Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 139, 9728–9736 (2017). https://doi.org/10.1021/jacs.7b05591

    Article  CAS  PubMed  Google Scholar 

  110. Sun, F., Tang, Q.: The ligand effect on the interface structures and electrocatalytic applications of atomically precise metal nanoclusters. Nanotechnology 32, 352001 (2021). https://doi.org/10.1088/1361-6528/ac027c

    Article  ADS  CAS  Google Scholar 

  111. Cao, Y.T., Guo, J.H., Shi, R., et al.: Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates. Nat. Commun. 9, 2379 (2018). https://doi.org/10.1038/s41467-018-04837-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xu, G.T., Wu, L.L., Chang, X.Y., et al.: Solvent-induced cluster-to-cluster transformation of homoleptic gold(I) thiolates between catenane and ring-in-ring structures. Angew. Chem. Int. Ed. 58, 16297–16306 (2019). https://doi.org/10.1002/anie.201909980

    Article  CAS  Google Scholar 

  113. Pei, Y., Wang, P., Ma, Z.Y., et al.: Growth-rule-guided structural exploration of thiolate-protected gold nanoclusters. Acc. Chem. Res. 52, 23–33 (2019). https://doi.org/10.1021/acs.accounts.8b00385

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, M.M., Dong, X.Y., Wang, Y.J., et al.: Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands. Coord. Chem. Rev. 453, 214315 (2022). https://doi.org/10.1016/j.ccr.2021.214315

    Article  CAS  Google Scholar 

  115. Hu, H.L., Lan, L.L., Zhang, T., et al.: Recent advances in polyoxometalate-based metal-alkynyl clusters. CrystEngComm 24, 3317–3331 (2022). https://doi.org/10.1039/d2ce00190j

    Article  CAS  Google Scholar 

  116. Zhang, M.M., Dong, X.Y., Wang, Z.Y., et al.: AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem. 132, 10138–10144 (2020). https://doi.org/10.1002/ange.201908909

    Article  ADS  Google Scholar 

  117. Dhayal, R.S., van Zyl, W.E., Liu, C.W.: Copper hydride clusters in energy storage and conversion. Dalton Trans. 48, 3531–3538 (2019). https://doi.org/10.1039/c8dt04639e

    Article  CAS  PubMed  Google Scholar 

  118. Liu, G., Poths, P., Zhang, X., et al.: CO2 hydrogenation to formate and formic acid by bimetallic palladium–copper hydride clusters. J. Am. Chem. Soc. 142, 7930–7936 (2020). https://doi.org/10.1021/jacs.0c01855

    Article  CAS  PubMed  Google Scholar 

  119. Shen, H., Xiang, S.J., Xu, Z., et al.: Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 13, 1908–1911 (2020). https://doi.org/10.1007/s12274-020-2685-0

    Article  CAS  Google Scholar 

  120. Lei, Z., Endo, M., Ube, H., et al.: N-Heterocyclic carbene-based C-centered Au(I)-Ag(I) clusters with intense phosphorescence and organelle-selective translocation in cells. Nat. Commun. 13, 4288 (2022). https://doi.org/10.1038/s41467-022-31891-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yuan, S.F., He, R.L., Han, X.S., et al.: Robust gold nanocluster protected with amidinates for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60, 14345–14349 (2021). https://doi.org/10.1002/anie.202103060

    Article  CAS  Google Scholar 

  122. Tang, Q., Jiang, D.E.: Insights into the PhC≡C/Au interface. J. Phys. Chem. C 119, 10804–10810 (2015). https://doi.org/10.1021/jp508883v

    Article  CAS  Google Scholar 

  123. Hu, Q., Gao, K.R., Wang, X.D., et al.: Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 13, 3958 (2022). https://doi.org/10.1038/s41467-022-31660-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sun, M.H., Ji, J.P., Hu, M.Y., et al.: Overwhelming the performance of single atoms with atomic clusters for platinum-catalyzed hydrogen evolution. ACS Catal. 9, 8213–8223 (2019). https://doi.org/10.1021/acscatal.9b02305

    Article  CAS  Google Scholar 

  125. Wilcoxon, J.P., Abrams, B.L.: Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 35, 1162 (2006). https://doi.org/10.1039/b517312b

    Article  CAS  PubMed  Google Scholar 

  126. Kwon, G., Ferguson, G.A., Heard, C.J., et al.: Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 7, 5808–5817 (2013). https://doi.org/10.1021/nn400772s

    Article  CAS  PubMed  Google Scholar 

  127. Wang, X.W., Qiu, S.Y., Feng, J.M., et al.: Confined Fe–Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction. Adv. Mater. 32, 2004382 (2020). https://doi.org/10.1002/adma.202004382

    Article  CAS  Google Scholar 

  128. Wan, X.K., Wu, H.B., Guan, B.Y., et al.: Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 32, 1901349 (2020). https://doi.org/10.1002/adma.201901349

    Article  CAS  Google Scholar 

  129. Tan, Y.Y., Zhu, W.B., Zhang, Z.Y., et al.: Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Energy 83, 105813 (2021). https://doi.org/10.1016/j.nanoen.2021.105813

    Article  CAS  Google Scholar 

  130. Negreiros, F.R., Halder, A., Yin, C.R., et al.: Bimetallic Ag-Pt sub-nanometer supported clusters as highly efficient and robust oxidation catalysts. Angew. Chem. Int. Ed. 57, 1209–1213 (2018). https://doi.org/10.1002/anie.201709784

    Article  CAS  Google Scholar 

  131. Lu, Y.Z., Chen, W.: Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41, 3594 (2012). https://doi.org/10.1039/c2cs15325d

    Article  CAS  PubMed  Google Scholar 

  132. Ni, B., Shi, Y.A., Wang, X.: The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 30, 1802031 (2018). https://doi.org/10.1002/adma.201802031

    Article  CAS  Google Scholar 

  133. Ni, B., Wang, X.: Chemistry and properties at a sub-nanometer scale. Chem. Sci. 7, 3978–3991 (2016). https://doi.org/10.1039/c6sc00432f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, H., Yang, Y., Liang, Y.X., et al.: Molecular stabilization of sub-nanometer Cu clusters for selective CO2 electromethanation. Chemsuschem 15, 2102010 (2022). https://doi.org/10.1002/cssc.202102010

    Article  CAS  Google Scholar 

  135. Liu, S.S., Wang, M.F., Ji, H.Q., et al.: Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. Natl. Sci. Rev. 8, nwaa136 (2021). https://doi.org/10.1093/nsr/nwaa136

    Article  CAS  PubMed  Google Scholar 

  136. Luo, Y., Li, M.Y., Dai, Y.X., et al.: Transition metal-modified Co4 clusters supported on graphdiyne as an effective nitrogen reduction reaction electrocatalyst. Inorg. Chem. 60, 18251–18259 (2021). https://doi.org/10.1021/acs.inorgchem.1c02880

    Article  CAS  PubMed  Google Scholar 

  137. Yang, H.R., Luo, D., Gao, R., et al.: Reduction of N2 to NH3 by TiO2-supported Ni cluster catalysts: a DFT study. Phys. Chem. Chem. Phys. 23, 16707–16717 (2021). https://doi.org/10.1039/d1cp00859e

    Article  CAS  PubMed  Google Scholar 

  138. Luo, D., Ma, C.Y., Hou, J.F., et al.: Integrating nanoreactor with O-Nb-C heterointerface design and defects engineering toward high-efficiency and longevous sodium ion battery. Adv. Energy Mater. 12, 2270071 (2022). https://doi.org/10.1002/aenm.202270071

    Article  ADS  Google Scholar 

  139. Tian, H., Liang, J., Liu, J.: Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv. Mater. 31, 1903886 (2019). https://doi.org/10.1002/adma.201903886

    Article  CAS  Google Scholar 

  140. An, S.F., Zhang, G.H., Wang, T.W., et al.: High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 12, 9441–9450 (2018). https://doi.org/10.1021/acsnano.8b04693

    Article  CAS  PubMed  Google Scholar 

  141. Wang, N.N., Chen, X.D., Jin, J.T., et al.: Tungsten nitride atomic clusters embedded two-dimensional g-C3N4 as efficient electrocatalysts for oxygen reduction reaction. Carbon 169, 82–91 (2020). https://doi.org/10.1016/j.carbon.2020.07.037

    Article  CAS  Google Scholar 

  142. Patil, R., Liu, S.D., Yadav, A., et al.: Superstructures of zeolitic imidazolate frameworks to single- and multiatom sites for electrochemical energy conversion. Small 18, 2203147 (2022). https://doi.org/10.1002/smll.202203147

    Article  CAS  Google Scholar 

  143. Wu, Y.C., Wei, W., Yu, R.H., et al.: Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 32, 2110910 (2022). https://doi.org/10.1002/adfm.202110910

    Article  CAS  Google Scholar 

  144. Wu, M.J., Zhang, G.X., Qiao, J.L., et al.: Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy 61, 86–95 (2019). https://doi.org/10.1016/j.nanoen.2019.04.031

    Article  CAS  Google Scholar 

  145. Takahashi, M., Koizumi, H., Chun, W.J., et al.: Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons. Sci. Adv. 3, e1700101 (2017). https://doi.org/10.1126/sciadv.1700101

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, B., Zheng, X.L., Voznyy, O., et al.: Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016). https://doi.org/10.1126/science.aaf1525

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Wang, K., Huang, J., Chen, H., et al.: Recent progress in high entropy alloys for electrocatalysts. Electrochem. Energy Rev. 5, 17 (2022). https://doi.org/10.1007/s41918-022-00144-8

    Article  CAS  Google Scholar 

  148. Feng, G., Ning, F.H., Song, J., et al.: Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143, 17117–17127 (2021). https://doi.org/10.1021/jacs.1c07643

    Article  CAS  PubMed  Google Scholar 

  149. Jin, Z.Y., Zhou, X.Y., Hu, Y.X., et al.: A fourteen-component high-entropy alloy@oxide bifunctional electrocatalyst with a record-low ΔE of 0.61 V for highly reversible Zn-air batteries. Chem. Sci. 13, 12056–12064 (2022). https://doi.org/10.1039/d2sc04461g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yu, L.L., Zeng, K.Z., Li, C.H., et al.: High-entropy alloy catalysts: from bulk to nano toward highly efficient carbon and nitrogen catalysis. Carbon Energy 4, 731–761 (2022). https://doi.org/10.1002/cey2.228

    Article  CAS  Google Scholar 

  151. Wu, D.S., Kusada, K., Yamamoto, T., et al.: Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 142, 13833–13838 (2020). https://doi.org/10.1021/jacs.0c04807

    Article  CAS  PubMed  Google Scholar 

  152. Minamihara, H., Kusada, K., Wu, D.S., et al.: Continuous-flow reactor synthesis for homogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles. J. Am. Chem. Soc. 144, 11525–11529 (2022). https://doi.org/10.1021/jacs.2c02755

    Article  CAS  PubMed  Google Scholar 

  153. Yang, C.P., Ko, B.H., Hwang, S., et al.: Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 6, eaaz6844 (2020). https://doi.org/10.1126/sciadv.aaz6844

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  154. Cavin, J., Ahmadiparidari, A., Majidi, L., et al.: 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv. Mater. 33, 2100347 (2021). https://doi.org/10.1002/adma.202100347

    Article  CAS  Google Scholar 

  155. Li, H.D., Han, Y., Zhao, H., et al.: Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 11, 5437 (2020). https://doi.org/10.1038/s41467-020-19277-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  156. Löffler, T., Savan, A., Meyer, H., et al.: Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angew. Chem. Int. Ed. 59, 5844–5850 (2020). https://doi.org/10.1002/anie.201914666

    Article  CAS  Google Scholar 

  157. Zhang, D., Zhao, H., Wu, X.K., et al.: Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys. Adv. Funct. Mater. 31, 2006939 (2021). https://doi.org/10.1002/adfm.202006939

    Article  CAS  Google Scholar 

  158. George, E.P., Raabe, D., Ritchie, R.O.: High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4

    Article  ADS  CAS  Google Scholar 

  159. Li, T.Y., Yao, Y.G., Huang, Z.N., et al.: Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nat. Catal. 4, 62–70 (2021). https://doi.org/10.1038/s41929-020-00554-1

    Article  CAS  Google Scholar 

  160. Xu, H.D., Zhang, Z.H., Liu, J.X., et al.: Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 11, 3908 (2020). https://doi.org/10.1038/s41467-020-17738-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  161. Song, B.A., Yang, Y., Rabbani, M., et al.: In situ oxidation studies of high-entropy alloy nanoparticles. ACS Nano 14, 15131–15143 (2020). https://doi.org/10.1021/acsnano.0c05250

    Article  CAS  PubMed  Google Scholar 

  162. Li, R.Z., Wang, D.S.: Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv. Energy Mater. 12, 2103564 (2022). https://doi.org/10.1002/aenm.202103564

    Article  CAS  Google Scholar 

  163. Zhang, J., Huang, Q.A., Wang, J., et al.: Supported dual-atom catalysts: preparation, characterization, and potential applications. Chin. J. Catal. 41, 783–798 (2020). https://doi.org/10.1016/S1872-2067(20)63536-7

    Article  CAS  Google Scholar 

  164. Chen, Z.S., Zhang, G.X., Wen, Y.R., et al.: Atomically dispersed Fe–Co bimetallic catalysts for the promoted electroreduction of carbon dioxide. Nano-Micro Lett. 14, 25 (2022). https://doi.org/10.1007/s40820-021-00746-9

    Article  ADS  CAS  Google Scholar 

  165. Li, W.X., Guo, Z.H., Yang, J., et al.: Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion. Electrochem. Energy Rev. 5, 9 (2022). https://doi.org/10.1007/s41918-022-00169-z

    Article  CAS  Google Scholar 

  166. Li, L.B., Yuan, K., Chen, Y.W.: Breaking the scaling relationship limit: from single-atom to dual-atom catalysts. Acc. Mater. Res. 3, 584–596 (2022). https://doi.org/10.1021/accountsmr.1c00264

    Article  CAS  Google Scholar 

  167. Zhou, W., Su, H., Cheng, W., et al.: Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction. Nat. Commun. 13, 6414 (2022). https://doi.org/10.1038/s41467-022-34169-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  168. Han, S.G., Ma, D.D., Zhu, Q.L.: Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction. Small Meth. 5, 2100102 (2021). https://doi.org/10.1002/smtd.202100102

    Article  CAS  Google Scholar 

  169. Leng, K.Y., Zhang, J.T., Wang, Y., et al.: Interfacial cladding engineering suppresses atomic thermal migration to fabricate well-defined dual-atom electrocatalysts. Adv. Funct. Mater. 32, 2270227 (2022). https://doi.org/10.1002/adfm.202270227

    Article  Google Scholar 

  170. Yin, C.Y., Li, Q., Zheng, J., et al.: Progress in regulating electronic structure strategies on Cu-based bimetallic catalysts for CO2 reduction reaction. Adv. Powder Mater. 1, 100055 (2022). https://doi.org/10.1016/j.apmate.2022.100055

    Article  Google Scholar 

  171. Zhang, N.Q., Zhang, X.X., Kang, Y.K., et al.: A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. 133, 13500–13505 (2021). https://doi.org/10.1002/ange.202101559

    Article  ADS  Google Scholar 

  172. Jia, Y.F., Li, F., Fan, K., et al.: Cu-based bimetallic electrocatalysts for CO2 reduction. Adv. Powder Mater. 1, 100012 (2022). https://doi.org/10.1016/j.apmate.2021.10.003

    Article  Google Scholar 

  173. Wang, Y., Park, B.J., Paidi, V.K., et al.: Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 7, 640–649 (2022). https://doi.org/10.1021/acsenergylett.1c02446

    Article  CAS  Google Scholar 

  174. Liang, Z., Song, L.P., Sun, M.Z., et al.: Tunable CO/H2 ratios of electrochemical reduction of CO2 through the Zn–Ln dual atomic catalysts. Sci. Adv. 7, eabl4915 (2021). https://doi.org/10.1126/sciadv.abl4915

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  175. An, Q.Z., Jiang, J.J., Cheng, W.R., et al.: Recent advances in dual-atom site catalysts for efficient oxygen and carbon dioxide electrocatalysis. Small Methods 6, 2200408 (2022). https://doi.org/10.1002/smtd.202200408

    Article  CAS  Google Scholar 

  176. Hao, Q., Zhong, H.X., Wang, J.Z., et al.: Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 1, 719–728 (2022). https://doi.org/10.1038/s44160-022-00138-w

    Article  ADS  Google Scholar 

  177. Gao, D.F., Liu, T.F., Wang, G.X., et al.: Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 6, 713–727 (2021). https://doi.org/10.1021/acsenergylett.0c02665

    Article  CAS  Google Scholar 

  178. He, Q., Liu, D.B., Lee, J.H., et al.: Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem. Int. Ed. 59, 3033–3037 (2020). https://doi.org/10.1002/anie.201912719

    Article  CAS  Google Scholar 

  179. Leverett, J., Tran-Phu, T., Yuwono, J.A., et al.: Tuning the coordination structure of Cu–N–C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3 to urea. Adv. Energy Mater. 12, 2201500 (2022). https://doi.org/10.1002/aenm.202201500

    Article  CAS  Google Scholar 

  180. Chen, Y.Q., Zhang, J.R., Yang, L.J., et al.: Recent advances in non-precious metal–nitrogen–carbon single-site catalysts for CO2 electroreduction reaction to CO. Electrochem. Energy Rev. 5, 11 (2022). https://doi.org/10.1007/s41918-022-00156-4

    Article  CAS  Google Scholar 

  181. Zhu, Z., Li, Z., Wang, J., et al.: Improving NiNX and pyridinic N active sites with space-confined pyrolysis for effective CO2 electroreduction. eScience 2, 445–452 (2022). https://doi.org/10.1016/j.esci.2022.05.002

    Article  Google Scholar 

  182. Gong, Y.N., Cao, C.Y., Shi, W.J., et al.: Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 61, 2215187 (2022). https://doi.org/10.1002/anie.202215187

    Article  CAS  Google Scholar 

  183. Yao, D.Z., Tang, C., Zhi, X., et al.: Inter-metal interaction with a threshold effect in NiCu dual-atom catalysts for CO2 electroreduction. Adv. Mater. 35, 2209386 (2023). https://doi.org/10.1002/adma.202209386

    Article  CAS  Google Scholar 

  184. Zeng, Z.P., Gan, L.Y., Yang, H.B., et al.: Orbital coupling of hetero-diatomic nickel–iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12, 4088 (2021). https://doi.org/10.1038/s41467-021-24052-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang, Y., Qian, Y.M., Li, H.J., et al.: O-coordinated W–Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020). https://doi.org/10.1126/sciadv.aba6586

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang, H., Liu, J.X., Allard, L.F., et al.: Surpassing the single-atom catalytic activity limit through paired Pt–O–Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10, 3808 (2019). https://doi.org/10.1038/s41467-019-11856-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  187. Fan, Z.Z., Luo, R.C., Zhang, Y.X., et al.: Oxygen-bridged indium–nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO2 reduction. Angew. Chem. 135, 2216326 (2023). https://doi.org/10.1002/ange.202216326

    Article  Google Scholar 

  188. Ding, T., Liu, X.K., Tao, Z.N., et al.: Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 143, 11317–11324 (2021). https://doi.org/10.1021/jacs.1c05754

    Article  CAS  PubMed  Google Scholar 

  189. Zhang, J.Y., Deng, Y.C., Cai, X.B., et al.: Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction. ACS Catal. 9, 5998–6005 (2019). https://doi.org/10.1021/acscatal.9b00601

    Article  CAS  Google Scholar 

  190. Liu, D.W., Wang, B., Srinivas, K., et al.: Rich and uncovered FeNx atom clusters anchored on nitrogen-doped graphene nanosheets for highly efficient and stable oxygen reduction reaction. J. Alloys Compd. 901, 163763 (2022). https://doi.org/10.1016/j.jallcom.2022.163763

    Article  CAS  Google Scholar 

  191. Hao, Q., Tang, Q., Zhong, H.X., et al.: Fully exposed nickel clusters with electron-rich centers for high-performance electrocatalytic CO2 reduction to CO. Sci. Bull. 67, 1477–1485 (2022). https://doi.org/10.1016/j.scib.2022.06.006

    Article  CAS  Google Scholar 

  192. Jia, Z.M., Peng, M., Cai, X.B., et al.: Fully exposed platinum clusters on a nanodiamond/graphene hybrid for efficient low-temperature CO oxidation. ACS Catal. 12, 9602–9610 (2022). https://doi.org/10.1021/acscatal.2c02769

    Article  CAS  Google Scholar 

  193. Shi, F., Wu, W.Z., Chen, J.F., et al.: Atomic-layered Pt clusters on S-vacancy rich MoS2–x with high electrocatalytic hydrogen evolution. Chem. Commun. 57, 7011–7014 (2021). https://doi.org/10.1039/d1cc02304g

    Article  CAS  Google Scholar 

  194. Zhang, Z.Y., Xu, X.F.: Mechanistic study on enhanced electrocatalytic nitrogen reduction reaction by Mo single clusters supported on MoS2. ACS Appl. Mater. Interfaces 14, 28900–28910 (2022). https://doi.org/10.1021/acsami.2c05649

    Article  CAS  PubMed  Google Scholar 

  195. Kibsgaard, J., Jaramillo, T.F., Besenbacher, F.: Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2 clusters. Nat. Chem. 6, 248–253 (2014). https://doi.org/10.1038/nchem.1853

    Article  CAS  PubMed  Google Scholar 

  196. Ugartemendia, A., Mercero, J.M., de Cózar, A., et al.: Does the composition in PtGe clusters play any role in fighting CO poisoning? (2022). J. Chem. Phys. 156, 209901 (2022). https://doi.org/10.1063/5.0098161

    Article  ADS  CAS  PubMed  Google Scholar 

  197. Peng, M., Dong, C.Y., Gao, R., et al.: Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 7, 262–273 (2021). https://doi.org/10.1021/acscentsci.0c01486

    Article  CAS  PubMed  Google Scholar 

  198. Yao, S.Y., Zhang, X., Zhou, W., et al.: Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017). https://doi.org/10.1126/science.aah4321

    Article  ADS  CAS  PubMed  Google Scholar 

  199. Jiang, J.X., Ding, W., Li, W., et al.: Freestanding single-atom-layer Pd-based catalysts: oriented splitting of energy bands for unique stability and activity. Chem 6, 431–447 (2020). https://doi.org/10.1016/j.chempr.2019.11.003

    Article  CAS  Google Scholar 

  200. Dong, C.Y., Gao, Z.R., Li, Y.L., et al.: Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat. Catal. 5, 485–493 (2022). https://doi.org/10.1038/s41929-022-00769-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22208331), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de Recherche du Québec-Nature et Technologies (FRQNT), McGill University, Institut National de la Recherche Scientifique (INRS), and École de Technologie Supérieure (ÉTS). Dr. G. Zhang thanks for the support from the Marcelle-Gauvreau Engineering Research Chair program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sasha Omanovic, Shuhui Sun or Gaixia Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Shuhui Sun is an executive editor-in-chief for Electrochemical Energy Reviews and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Dong, F., Yang, Y. et al. Emerging Atomically Precise Metal Nanoclusters and Ultrasmall Nanoparticles for Efficient Electrochemical Energy Catalysis: Synthesis Strategies and Surface/Interface Engineering. Electrochem. Energy Rev. 7, 10 (2024). https://doi.org/10.1007/s41918-024-00217-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-024-00217-w

Keywords

Navigation