Skip to main content
Log in

Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With high reversible capacities of more than 200 mAh/g, Ni-rich layered oxides Li[NixCoyMn1−xy]O2 (x ≥ 0.6) serve as the most promising cathode materials for lithium-ion batteries (LIBs). However, the anisotropic lattice volume changes linked to their α-NaFeO2 structured crystal grains bring about poor cycle performances for conventionally produced NCM materials. To deal with these issue, single-crystal pm-sized LiNi0.8Co0.1Mn0.1O2 rods was synthesized by a hydrothermal method. Compared with conventional synthesis methods, these LiNi0.8Co0.1Mn0.1O2 rods were calcined at a low temperature with excessive lithium sources, which not only reduces the sintering temperature but also ensures the mono-dispersed micrometer-scaled particle distribution. When used as the cathode material for LIBs, the as-prepared LiNi0.8Co0.1Mn0.1O2, with ordered layered-structure and low degree of cation mixing, shows excellent electrochemical performances. When sintered at 750 °C with 50% Li-excess, the cathode material delivered an initial discharge capacity of 226.9 mAh/g with Coulombic efficiency of 91.2% at 0.1 C (1 C = 200 mA/g) in the voltage range of 2.8–4.3 V. When charge-discharged at 1 C for 100 cycles, discharge capacity of 178.1 mAh/g with the capacity retention of 95.1% are still obtained. The cycling stability at high cut-off voltage is also outstanding. These superior electrochemical properties should be related to the monodispersed micron scaled morphology which not only decreases the contact area between electrode and electrolyte but also mitigates the formation of microcracks. This low-temperature strategy of synthesizing single-crystal LiNi0.8Co0.1Mn0.1O2 rods should be able to provide a feasible method for synthesizing other single-crystal Ni-rich cathode materials with excellent electrochemical performances for LIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  2. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  CAS  Google Scholar 

  3. Zeng, X. Q.; Li, M.; El-Hady, D. A.; Alshitari, W.; Al-Bogami, A. A.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

    Article  Google Scholar 

  4. Hu, W. H.; Zhang, Y. X.; Zan, L.; Cong, H. J. Mitigation of voltage decay in Li-rich layered oxides as cathode materials for lithium-ion batteries. Nano Res. 2020, 13, 151–159.

    Article  CAS  Google Scholar 

  5. Voronina, N.; Sun, Y. K.; Myung, S. T. Co-free layered cathode materials for high energy density lithium-ion batteries. ACS Energy Lett. 2020, 5, 1814–1824.

    Article  CAS  Google Scholar 

  6. Sun, D. P.; Tan, Z.; Tian, X. Z.; Ke, F.; Wu, Y. L.; Zhang, J. Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Res. 2021, in press.

  7. Qian, R. C.; Liu, Y. L.; Cheng, T.; Li, P. P.; Chen, R. M.; Lyu Y.; Guo B. K. Enhanced surface chemical and structural stability of Ni-rich cathode materials by synchronous lithium-ion conductor coating for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 13813–13823.

    Article  CAS  Google Scholar 

  8. Ren, D.; Shen, Y.; Yang, Y.; Shen, L. X.; Levin, B. D. A.; Yu, Y. C.; Muller, D. A.; Abruña, H. D. Systematic optimization of battery materials: Key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 35811–35819.

    Article  CAS  Google Scholar 

  9. Zhang, S.; Ma, J.; Hu, Z. L.; Cui G. L.; Chen L. Q. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials. Chem. Mater. 2019, 31, 6033–6065.

    Article  CAS  Google Scholar 

  10. Lee, W.; Muhammad, S.; Kim, T.; Kim, H.; Lee, E.; Jeong, M.; Son, S.; Ryou, J. H.; Yoon, W. S. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries. Adv. Energy Mater. 2018, 8, 1701788.

    Article  Google Scholar 

  11. Lee, M. H.; Kang, Y. J.; Myung, S. T.; Sun, Y. K. Synthetic optimization of Li [Ni1/3Co1/3Mn1/3] O2 via co-precipitation. Electrochim. Acta 2004, 50, 939–948.

    Article  CAS  Google Scholar 

  12. Van Bommel, A.; Dahn, J. R. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia. Chem. Mater. 2009, 21, 1500–1503.

    Article  CAS  Google Scholar 

  13. Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529.

    Article  Google Scholar 

  14. Yan, P. F.; Zheng, J. M.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.

    Article  CAS  Google Scholar 

  15. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 2017, 164, A1361–A1377.

    Article  CAS  Google Scholar 

  16. Yang, C. K.; Qi, L. Y.; Zuo, Z. C.; Wang, R. N.; Ye, M.; Lu, J.; Zhou, H. H. Insights into the inner structure of high-nickel agglomerate as high-performance lithium-ion cathodes. J. Power Sources 2016, 331, 487–494.

    Article  CAS  Google Scholar 

  17. Jung, S. K.; Gwon, H.; Hong, J.; Park, K. Y.; Seo, D. H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater. 2014, 4, 1300787.

    Article  Google Scholar 

  18. Wu, K.; Jia, G. F.; Shangguan, X. H.; Yang, G. W.; Zhu, Z. H.; Peng, Z. J.; Zhuge, Q.; Li, F. Q.; Cui, X. L.; Liu, S. Q. Improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 by enlarging the Li layer spacing. Energy Technol. 2018, 6, 1885–1893.

    Article  CAS  Google Scholar 

  19. Wang, Y. Y.; Sun, Y. Y.; Liu, S.; Li, G. R.; Gao, X. P. Na-doped LiNi0.8Co0.15Al0.05O2 with excellent stability of both capacity and potential as cathode materials for Li-ion batteries. ACS Appl. Energy Mater. 2018, 1, 3881–3889.

    Article  CAS  Google Scholar 

  20. Wang, L. F.; Liu, G. Y.; Ding, X. N.; Zhan, C.; Wang, X. D. Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithiumion batteries. ACS Appl. Mater. Interfaces 2019, 11, 33901–33912.

    Article  CAS  Google Scholar 

  21. Jiang, Y.; Bi, Y. J.; Liu, M.; Peng, Z.; Huai, L. Y.; Dong, P.; Duan, J. G.; Chen, Z. L.; Li, X.; Wang, D. Y. et al. Improved stability of Ni-rich cathode by the substitutive cations with stronger bonds. Electrochim. Acta 2018, 268, 41–48.

    Article  CAS  Google Scholar 

  22. Becker, D.; Börner, M.; Nölle, R.; Diehl, M.; Klein, S.; Rodehorst, U.; Schmuch, R.; Winter, M.; Placke, T. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 18404–18414.

    Article  CAS  Google Scholar 

  23. Lu, J.; Peng, Q.; Wang, W. Y.; Nan, C. Y.; Li, L. H.; Li, Y. D. Nanoscale coating of LiMO2 (M=Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: Toward better rate capabilities for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 1649–1652.

    Article  CAS  Google Scholar 

  24. Chen, S.; He, T.; Su, Y. F.; Li, Y.; Bao, L. Y.; Chen, L.; Zhang, Q. Y.; Wang, J.; Chen, R. J.; Wu, F. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 29732–29743.

    Article  CAS  Google Scholar 

  25. Cao, Y. B.; Qi, X. Y.; Hu, K. H.; Wang, Y.; Gan, Z. G.; Li, Y.; Hu, G. R.; Peng, Z. D.; Du, K. Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 18270–18280.

    Article  CAS  Google Scholar 

  26. Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479.

    Article  CAS  Google Scholar 

  27. Zhu, J.; Chen, G. Y. Single-crystal based studies for correlating the properties and high-voltage performance of Li[NixMnyCo1−x−y]O2 cathodes. J. Mater. Chem. A 2019, 7, 5463–5474.

    Article  CAS  Google Scholar 

  28. Zhang, H. X.; Yang, S. Y.; Huang, Y. Y.; Hou, X. H. Synthesis of non-spherical LiNi0.88Co0.09Al0.03O2 cathode material for lithium-ion batteries. Energy Fuels 2020, 34, 9002–9010.

    Article  CAS  Google Scholar 

  29. Chung, H.; Grenier, A.; Huang, R.; Wang, X. F.; Lebens-Higgins, Z.; Doux, J. M.; Sallis, S.; Song, C. Y.; Ercius, P.; Chapman, K. et al. Comprehensive study of a versatile polyol synthesis approach for cathode materials for Li-ion batteries. Nano Res. 2019, 12, 2238–2249.

    Article  CAS  Google Scholar 

  30. Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng, X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.

    Article  CAS  Google Scholar 

  31. Lee, S. W.; Kim, H.; Kim, M. S.; Youn, H. C.; Kang, K.; Cho, B. W.; Roh, K. C.; Kim, K. B. Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J. Power Sources 2016, 315, 261–268.

    Article  CAS  Google Scholar 

  32. Li, J.; Cameron, A. R.; Li, H. Y.; Glazier, S.; Xiong, D. J.; Chatzidakis, M.; Allen, J.; Botton, G. A.; Dahn, J. R. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J. Electrochem. Soc. 2017, 164, A1534–A1544.

    Article  CAS  Google Scholar 

  33. Idris, M. S.; West, A. R. The effect on cathode performance of oxygen non-stoichiometry and interlayer mixing in layered rock salt LiNi0.8Mn0.1Co0.1O2−δ. J. Electrochem. Soc. 2012, 159, A396–A401.

    Article  CAS  Google Scholar 

  34. Kim, Y. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: Morphology and performance as a cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 2329–2333.

    Article  CAS  Google Scholar 

  35. Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.

    Article  CAS  Google Scholar 

  36. Sun, C. L.; Liao, X. B.; Xia, F. J.; Zhao, Y.; Zhang, L.; Mu, S.; Shi, S. S.; Li, Y. X.; Peng, H. Y.; Van Tendeloo, G. et al. High-voltage cycling induced thermal vulnerability in LiCoO2 cathode: Cation loss and oxygen release driven by oxygen vacancy migration. ACS Nano 2020, 14, 6181–6190.

    Article  CAS  Google Scholar 

  37. Kimijima, T.; Zettsu, N.; Yubuta, K.; Hirata, K.; Kami, K.; Teshima, K. Molybdate flux growth of idiomorphic Li(Ni1/3Co1/3Mn1/3)O2 single crystals and characterization of their capabilities as cathode materials for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 7289–7296.

    Article  CAS  Google Scholar 

  38. Kimijima, T.; Zettsu, N.; Teshima, K. Growth manner of octahedral-shaped Li(Ni1/3Co1/3Mn1/3)O2 single crystals in molten Na2SO4. Cryst. Growth Des. 2016, 16, 2618–2623.

    Article  CAS  Google Scholar 

  39. Xiong, X. H.; Wang, Z. X.; Yue, P.; Guo, H. J.; Wu, F. X.; Wang, J. X.; Li, X. H. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J. Power Sources 2013, 222, 318–325.

    Article  CAS  Google Scholar 

  40. Wu, Y.; Cao, T.; Wang, R.; Meng, F. J.; Zhang, J. T.; Cao, C. B. A general strategy for the synthesis of two-dimensional holey nanosheets as cathodes for superior energy storage. J. Mater. Chem. A 2018, 6, 8374–8381.

    Article  CAS  Google Scholar 

  41. Li, D. C.; Muta, T.; Zhang, L. Q.; Yoshio, M.; Noguchi, H. Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2. J. Power Sources 2004, 132, 150–155.

    Article  CAS  Google Scholar 

  42. Kang, K.; Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 2006, 74, 094105.

    Article  Google Scholar 

  43. Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 2018, 8, 1702028.

    Article  Google Scholar 

  44. Duan, J. G.; Wu, C.; Cao, Y. B.; Huang, D. H.; Du, K.; Peng, Z. D.; Hu, G. R. Enhanced compacting density and cycling performance of Ni-riched electrode via building mono dispersed micron scaled morphology. J. Alloys Compd. 2017, 695, 91–99.

    Article  CAS  Google Scholar 

  45. Wu, K.; Li, Q.; Dang, R. B.; Deng, X.; Chen, M. M.; Lee, Y. L.; Xiao, X. L.; Hu, Z. B. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shell structuring. Nano Res. 2019, 12, 2460–2467.

    Article  CAS  Google Scholar 

  46. Dong, M. X.; Wang, Z. X.; Li, H. K.; Guo, H. J.; Li, X. H.; Shih, K.; Wang, J. X. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. ACS Sustainable Chem. Eng. 2017, 5, 10199–10205.

    Article  CAS  Google Scholar 

  47. Nai, J. W.; Zhao, X. Y.; Yuan, H. D.; Tao, X. Y.; Guo, L. Amorphous carbon-based materials as platform for advanced highperformance anodes in lithium secondary batteries. Nano Res. 2021, 14, 2053–2066.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation of China (grant No. 21271145) and the National Science Foundation of Hubei Province (grant No. 2015CFB537) for the financial support for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youxiang Zhang.

Electronic Supplementary Material

12274_2021_3784_MOESM1_ESM.pdf

Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Xie, Y. & Zhang, Y. Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries. Nano Res. 15, 2052–2059 (2022). https://doi.org/10.1007/s12274-021-3784-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3784-2

Keywords

Navigation