Skip to main content
Log in

Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The source of activity of metal/metal oxides has always been an interesting, important but highly challenging research topic in heterogeneous catalysis. In CO oxidation reaction, this work clarifies dispersion and support dictated activities of Pt including single-atom (Pt1), 2.8 nm (PtNP-S) and 36 nm (PtNP-L) Pt supported on both reducible TiO2 and “inert” Al2O3 supports. The X-ray absorption fine structure (XAFS) shows that chemical state of Pt is affected by both dispersion and support: Pt1 presents fully oxidized state in both Pt1/TiO2 and Pt1/Al2O3; PtNP-S in PtNP-S/TiO2 appear nearly oxidized state while about half of Pt is metallic state in PtNP-S/Al2O3; PtNP-L in both PtNP-L/TiO2 and PtNP-L/Al2O3 exhibit metallic state. All the Pt species supported on TiO2 present much lower apparent activation barriers (Eapp) than that on Al2O3. Moreover, Pt1/TiO2 possesses dozen times of efficiency than PtNP-S/TiO2 although they have similar Eapp values. A truth is finally made clear that a reducible metal oxide with low oxygen vacancy formation energy is critical to endow Pt/metal oxide a high activity and the single-atom dispersion of Pt is the way to maximize the active sites of Pt/metal oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, J.; Wang, X. D.; Zhang, T. Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures. Chin. J. Catal. 2016, 37, 1805–1813.

    Article  CAS  Google Scholar 

  2. Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  Google Scholar 

  3. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  4. Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

    Article  CAS  Google Scholar 

  5. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    Article  CAS  Google Scholar 

  6. Wen, J. F.; Chen, Y. J.; Ji, S. F.; Zhang, J.; Wang, D. S.; Li, Y. D. Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Res. 2019, 12, 2584–2588.

    Article  CAS  Google Scholar 

  7. Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.

    Article  CAS  Google Scholar 

  8. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

    Article  CAS  Google Scholar 

  9. Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W. L.; Ferrin, P.; Nilekar, A. U.; Peng, G. W.; Herron, J. A.; Bell, D. C.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633–1636.

    Article  CAS  Google Scholar 

  10. de Lima, S. M.; da Cruz, I. O.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B. Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. J. Catal. 2008, 257, 356–368.

    Article  CAS  Google Scholar 

  11. Lin, L. L.; Zhou, W.; Cao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

    Article  CAS  Google Scholar 

  12. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  Google Scholar 

  13. Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

    Article  CAS  Google Scholar 

  14. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  15. Chen, Z.; Yang, W. J.; Wu, Y.; Zhang, C.; Luo, J.; Chen, C.; Li, Y. D. Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature. Nano Res. 2020, 13, 3075–3081.

    Article  CAS  Google Scholar 

  16. Cao, S. F.; Yang, M.; Elnabawy, A. O.; Trimpalis, A.; Li, S.; Wang, C. Y.; Göltl, F.; Chen, Z. H. Y.; Liu, J. L.; Shan, J. J. et al. Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions. Nat. Chem. 2019, 11, 1098–1105.

    Article  CAS  Google Scholar 

  17. Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Catalytically active Au-O(OH)x species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498–1501.

    Article  CAS  Google Scholar 

  18. Gates, B. C.; Flytzani-Stephanopoulos, M.; Dixon, D. A.; Katz, A. Atomically dispersed supported metal catalysts: Perspectives and suggestions for future research. Catal. Sci. Technol. 2017, 7, 4259–4275.

    Article  CAS  Google Scholar 

  19. Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. A.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.

    Article  CAS  Google Scholar 

  20. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  21. Pan, Y.; Zhang, C.; Lin, Y.; Liu, Z.; Wang, M. M.; Chen, C. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921–948.

    Article  CAS  Google Scholar 

  22. Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189–192.

    Article  CAS  Google Scholar 

  23. Maurer, F.; Jelic, J.; Wang, J. J.; Gänzler, A.; Dolcet, P.; Wöll, C.; Wang, Y. M.; Studt, F.; Casapu, M.; Grunwaldt, J. D. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat. Catal. 2020, 3, 824–833.

    Article  CAS  Google Scholar 

  24. Therrien, A. J.; Hensley, A. J. R.; Marcinkowski, M. D.; Zhang, R. Q.; Lucci, F. R.; Coughlin, B.; Schilling, A. C.; McEwen, J. S.; Sykes, E. C. H. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 2018, 1, 192–198.

    Article  CAS  Google Scholar 

  25. Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

    Article  CAS  Google Scholar 

  26. Chen, W. L.; Ma, Y. L.; Li, F.; Pan, L.; Gao, W. P.; Xiang, Q.; Shang, W.; Song, C. Y.; Tao, P.; Zhu, H. et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv. Funct. Mater. 2019, 29, 1904278.

    Article  CAS  Google Scholar 

  27. Zhang, Z. L.; Zhu, Y. H.; Asakura, H.; Zhang, B.; Zhang, J. G.; Zhou, M. X.; Han, Y.; Tanaka, T.; Wang, A. Q.; Zhang, T. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 2017, 8, 16100.

    Article  CAS  Google Scholar 

  28. Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634–12645.

    Article  CAS  Google Scholar 

  29. Wang, H.; Liu, J. X.; Allard, L. F.; Lee, S.; Liu, J. L.; Li, H.; Wang, J. Q.; Wang, J.; Oh, S. H.; Li, W. et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 2019, 10, 3808.

    Article  Google Scholar 

  30. Beniya, A.; Higashi, S.; Ohba, N.; Jinnouchi, R.; Hirata, H.; Watanabe, Y. CO oxidation activity of non-reducible oxide-supported mass-selected few-atom Pt single-clusters. Nat. Commun. 2020, 11, 1888.

    Article  CAS  Google Scholar 

  31. van Deelen, T. W.; Mejía, C. H.; de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

    Article  CAS  Google Scholar 

  32. Jiao, J. Q.; Pan, Y.; Wang, B.; Yang, W. J.; Liu, S. J.; Zhang, C. Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core-shell electrocatalysts for rechargeable zinc-air batteries. J. Energy Chem. 2021, 53, 364–371.

    Article  Google Scholar 

  33. Liu, K. P.; Zhao, X. T.; Ren, G. Q.; Yang, T.; Ren, Y. J.; Lee, A. F.; Su, Y.; Pan, X. L.; Zhang, J. C.; Chen, Z. Q. et al. Strong metal-support interaction promoted scalable production of thermally stable singleatom catalysts. Nat. Commun. 2020, 11, 1263.

    Article  CAS  Google Scholar 

  34. Tang, Y.; Wang, Y. G.; Li, J. Theoretical investigations of Pt1@CeO2 single-atom catalyst for CO oxidation. J. Phys. Chem. C 2017, 121, 11281–11289.

    Article  CAS  Google Scholar 

  35. Wang, C. L.; Gu X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars-Van Krevelen mechanism for CO Oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.

    Article  CAS  Google Scholar 

  36. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  CAS  Google Scholar 

  37. Zhao, Y. Y.; Yang, K. R.; Wang, Z. C.; Yan, X. X.; Cao, S. F.; Ye, Y. F.; Dong, Q.; Zhang, X. Z.; Thorne, J. E.; Jin, L. et al. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl. Acad. Sci. USA 2018, 115, 2902–2907.

    Article  CAS  Google Scholar 

  38. Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

    Article  CAS  Google Scholar 

  39. Li, H. N.; Cao, C. Y.; Liu, J.; Shi, Y.; Si, R.; Gu, L.; Song, W. G. Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Sci. China Mater. 2019, 62, 1306–1314.

    Article  CAS  Google Scholar 

  40. Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

    Article  Google Scholar 

  41. Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

    Article  CAS  Google Scholar 

  42. Kwak, J. H.; Kovarik, L.; Szanyi, J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal. 2013, 3, 2094–2100.

    Article  CAS  Google Scholar 

  43. Allard, L. F.; Borisevich, A.; Deng, W. L.; Si, R.; Flytzani-Stephanopoulos, M.; Overbury, S. H. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron Microsc. 2009, 58, 199–212.

    Article  CAS  Google Scholar 

  44. Kuai, L.; Liu, S. J.; Cao, S. F.; Ren, Y. M.; Kan, E. J.; Zhao, Y. Y.; Yu, N.; Li, F.; Li, X. Y.; Wu, Z. C. et al. Atomically dispersed Pt/metal oxide mesoporous catalysts from synchronous pyrolysis-deposition route for water-gas shift reaction. Chem. Mater. 2018, 30, 5534–5538.

    Article  CAS  Google Scholar 

  45. Xiang, Y. P.; He, J.; Sun, N.; Fan, Y. T.; Yang, L. M.; Fang, C. H.; Kuai, L. Hollow mesoporous CeO2 microspheres for efficient loading of Au single-atoms to catalyze the water-gas shift reaction. Microp. Mesop. Mater. 2020, 308, 110507.

    Article  CAS  Google Scholar 

  46. Kan, E. J.; Kuai, L.; Wang, W. H.; Geng, B. Y. Delivery of highly active noble-metal nanoparticles into microspherical supports by an aerosol-spray method. Chem. Eur. J. 2015, 21, 13291–13296.

    Article  CAS  Google Scholar 

  47. Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B 1999, 103, 3818–3827.

    Article  CAS  Google Scholar 

  48. Wang, S. Z.; Kuai, L.; Huang, Y. C.; Yu, X.; Liu, Y. D.; Li, W. Z.; Chen, L.; Geng, B. Y. A highly efficient, clean-surface, porous platinum electrocatalyst and the inhibition effect of surfactants on catalytic activity. Chem. Eur. J. 2013, 19, 240–248.

    Article  CAS  Google Scholar 

  49. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002, 14, 2717.

    CAS  Google Scholar 

  50. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

    Article  CAS  Google Scholar 

  51. Hamann, D. R.; Schlüter, M.; Chiang, C. Norm-conserving pseudopotentials. Phys. Rev. Lett. 1979, 43, 1494–1497.

    Article  CAS  Google Scholar 

  52. Li, C.; Zhao, Y. F.; Gong, Y. Y.; Wang, T.; Sun, C. Q. Band gap engineering of early transition-metal-doped anatase TiO2: First principles calculations. Phys. Chem. Chem. Phys. 2014, 16, 21446–21451.

    Article  CAS  Google Scholar 

  53. Yan, D. X.; Liu, Q.; Zeng, C.; Dong, N. B.; Huang, Y. D.; Xiao, W. Adsorption of lithium polysulfides on an anatase (101) and an α-Al2O3(0001) surface under external electric field with first principles calculations. Appl. Surf. Sci. 2019, 463, 331–338.

    Article  CAS  Google Scholar 

  54. Xu, B.; Yang, H.; Zhou, G.; Wang, X. Strong metal-support interaction in size-controlled monodisperse palladium-hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Sci. China Mater. 2014, 57, 34–41.

    Article  Google Scholar 

  55. Yang, M.; Liu, J. L.; Lee, S.; Zugic, B.; Huang, J.; Allard, L. F.; Flytzani-Stephanopoulos, M. A common single-site Pt(II)-O(OH)x-species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 2015, 137, 3470–3473.

    Article  CAS  Google Scholar 

  56. Thang, H. V.; Pacchioni, G.; Derita, L.; Christopher, P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J. Catal. 2018, 367, 104–114.

    Article  CAS  Google Scholar 

  57. DeRita, L.; Resasco, J.; Dai, S.; Boubnov, A.; Thang, H. V.; Hoffman, A. S.; Ro, I.; Graham, G. W.; Bare, S. R.; Pacchioni, G. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 18, 746–751.

    Article  CAS  Google Scholar 

  58. Baxter, R. J.; Hu, P. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 2002, 116, 4379.

    Article  CAS  Google Scholar 

  59. Ertl, G. Reactions at surfaces: From atoms to complexity (Nobel Lecture). Angew. Chem., Int. Ed. 2008, 47, 3524–3535.

    Article  CAS  Google Scholar 

  60. Qin, L.; Cui Y. Q.; Deng T. L.; Wei, F. H.; Zhang, X. F. Highly stable and active Cu1/CeO2 single-atom catalyst for CO oxidation: A DFT study. ChemPhyChem 2018, 19, 3346–3349.

    Article  CAS  Google Scholar 

  61. Thang, H. V.; Pacchioni, G. CO oxidation promoted by a Pt4/TiO2 catalyst: Role of lattice oxygen at the metal/oxide interface. Catal. Lett. 2019, 149, 390–398.

    Article  CAS  Google Scholar 

  62. Sanchez, M. G.; Gazquez, J. L. Oxygen vacancy model in strong metal-support interaction. J. Catal. 1987, 104, 120–135.

    Article  CAS  Google Scholar 

  63. Gao, H. W. CO oxidation mechanism on the γ-Al2O3 supported single Pt atom: First principle study. Appl. Surf. Sci. 2016, 379, 347–357.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21801003 and 21871005), the Natural Science Foundation of Anhui Province (No. 1808085QB47), the University Synergy Innovation Program of Anhui Province (No. GXXT-2020-005), Fund for Outstanding Youth of Anhui Polytechnic University (Nos. 2019JQ01 and 2016BJRC001). The authors thank the National Synchrotron Radiation Laboratory (Beijing) for EXAFS collection and Hangzhou Precision New Materials and Technology Co., Ltd. (Hangzhou, China) for the DFT study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Kuai or Baoyou Geng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Yang, Y., Liu, S. et al. Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Res. 14, 4841–4847 (2021). https://doi.org/10.1007/s12274-021-3443-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3443-7

Keywords

Navigation