Skip to main content
Log in

Understanding the intrinsic synergistic mechanism between Pt-O-Ti interface sites and TiO2 surface sites of Pt/TiO2 catalysts in Fenton-like reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Identifying the active site of oxide-supported metal catalysts and revealing the intrinsic synergistic mechanism between metal and oxide support remain a large challenge. Herein, we report the identification and separation of the Pt-O-Ti interface and TiO2 surface in Pt-TiO2-based catalysts by depositing different thickness of TiO2 shell with ∼0.4-nm micropores onto the surface of Pt/TiO2 catalyst through atomic layer deposition (ALD). In the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) process, the TiO2 microporous shells can prevent the contact between TMB and embedded Pt clusters, but not delay the diffusion of H2O2. The heterolysis of H2O2 to •OH occurs on the Pt-O-Ti interface, and the generated •OH migrates to the TiO2 surface to supplement the surface lattice oxygen, which sequentially oxidizes TMB to oxTMB. And the synergistic effect between Pt-O-Ti interface active sties and TiO2 surface active sites can significantly improve the catalytic performance. Our study provides a guide for the understanding of the intrinsic synergistic mechanism between the metal and oxide support in the metal-oxide catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suchorski Y, Kozlov SM, Bespalov I, Datler M, Vogel D, Budinska Z, Neyman KM, Rupprechter G. Nat Mater, 2018, 17: 519–522

    CAS  Google Scholar 

  2. van Deelen TW, Hernández Mejía C, de Jong KP. Nat Catal, 2019, 2: 955–970

    CAS  Google Scholar 

  3. Sankar M, He Q, Engel RV, Sainna MA, Logsdail AJ, Roldan A, Willock DJ, Agarwal N, Kiely CJ, Hutchings GJ. Chem Rev, 2020, 120: 3890–3938

    CAS  Google Scholar 

  4. Jin R, Li G, Sharma S, Li Y, Du X. Chem Rev, 2021, 121: 567–648

    CAS  Google Scholar 

  5. Matsubu JC, Zhang S, DeRita L, Marinkovic NS, Chen JG, Graham GW, Pan X, Christopher P. Nat Chem, 2017, 9: 120–127

    CAS  Google Scholar 

  6. Zhang S, Gan J, Xia Z, Chen X, Zou Y, Duan X, Qu Y. Chem, 2020, 6: 2994–3006

    CAS  Google Scholar 

  7. Liu L, Corma A. Nat Catal, 2021, 4: 453–456

    CAS  Google Scholar 

  8. Ge H, Zhang B, Gu X, Liang H, Yang H, Gao Z, Wang J, Qin Y. Angew Chem Int Ed, 2016, 55: 7081–7085

    CAS  Google Scholar 

  9. Chen Y, Zhang X, Wang X, Drout RJ, Mian MR, Cao R, Ma K, Xia Q, Li Z, Farha OK. J Am Chem Soc, 2021, 143: 4302–4310

    CAS  Google Scholar 

  10. Sheng M, Fujita S, Yamaguchi S, Yamasaki J, Nakajima K, Yamazoe S, Mizugaki T, Mitsudome T. JACS Au, 2021, 1: 501–507

    CAS  Google Scholar 

  11. Chen S, Xiong F, Huang W. Surf Sci Rep, 2019, 74: 100471

    CAS  Google Scholar 

  12. Zhang Z, You R, Huang W. Chin J Chem, 2022, 40: 846–855

    CAS  Google Scholar 

  13. Chen B, Zaera F. J Phys Chem C, 2021, 125: 14709–14717

    CAS  Google Scholar 

  14. Yuan W, Zhu B, Fang K, Li XY, Hansen TW, Ou Y, Yang H, Wagner JB, Gao Y, Wang Y, Zhang Z. Science, 2021, 371: 517–521

    CAS  Google Scholar 

  15. Green IX, Tang W, Neurock M, YatesJr. JT. Science, 2011, 333: 736–739

    CAS  Google Scholar 

  16. Widmann D, Behm RJ. J Catal, 2018, 357: 263–273

    Google Scholar 

  17. Yu G, Wang Y, Cao H, Zhao H, Xie Y. Environ Sci Technol, 2020, 54: 5931–5946

    CAS  Google Scholar 

  18. Mo S, Zhang Q, Li J, Sun Y, Ren Q, Zou S, Zhang Q, Lu J, Fu M, Mo D, Wu J, Huang H, Ye D. Appl Catal B-Environ, 2020, 264: 118464

    CAS  Google Scholar 

  19. Wang Y, Duan X, Xie Y, Sun H, Wang S. ACS Catal, 2020, 10: 13383–13414

    CAS  Google Scholar 

  20. Gao Z, Qin Y. Acc Chem Res, 2017, 50: 2309–2316

    CAS  Google Scholar 

  21. Zhang B, Qin Y. ACS Catal, 2018, 8: 10064–10081

    CAS  Google Scholar 

  22. Fonseca J, Lu J. ACS Catal, 2021, 11: 7018–7059

    CAS  Google Scholar 

  23. Zimmermann R, Steiner P, Claessen R, Reinert F, Hüfner S, Blaha P, Dufek P. J Phys-Condens Matter, 1999, 11: 1657–1682

    CAS  Google Scholar 

  24. Ren Y, Tang Y, Zhang L, Liu X, Li L, Miao S, Sheng Su D, Wang A, Li J, Zhang T. Nat Commun, 2019, 10: 4500

    Google Scholar 

  25. Ohyama J, Yamamoto A, Teramura K, Shishido T, Tanaka T. ACS Catal, 2011, 1: 187–192

    CAS  Google Scholar 

  26. Han B, Guo Y, Huang Y, Xi W, Xu J, Luo J, Qi H, Ren Y, Liu X, Qiao B, Zhang T. Angew Chem Int Ed, 2020, 59: 11824–11829

    CAS  Google Scholar 

  27. Zhang W, Wang H, Jiang J, Sui Z, Zhu Y, Chen D, Zhou X. ACS Catal, 2020, 10: 12932–12942

    CAS  Google Scholar 

  28. Kale MJ, Christopher P. ACS Catal, 2016, 6: 5599–5609

    CAS  Google Scholar 

  29. Gilson J. J Catal, 1984, 88: 538–541

    CAS  Google Scholar 

  30. Naya S, Teranishi M, Kimura K, Tada H. Chem Commun, 2011, 47: 3230–3232

    CAS  Google Scholar 

  31. Naya S, Teranishi M, Aoki R, Tada H. J Phys Chem C, 2016, 120: 12440–12445

    CAS  Google Scholar 

  32. Michalow-Mauke KA, Lu Y, Kowalski K, Graule T, Nachtegaal M, Kröcher O, Ferri D. ACS Catal, 2015, 5: 5657–5672

    CAS  Google Scholar 

  33. Murcia JJ, Hidalgo MC, Navío JA, Araña J, Doña-Rodríguez JM. Appl Catal B-Environ, 2013, 142–143: 205–213

    Google Scholar 

  34. Yee A, Morrison SJ, Idriss H. J Catal, 2000, 191: 30–45

    CAS  Google Scholar 

  35. Yee A, Morrison SJ, Idriss H. J Catal, 1999, 186: 279–295

    CAS  Google Scholar 

  36. Zhou ZY, Wang Q, Lin JL, Tian N, Sun SG. Electrochim Acta, 2010, 55: 7995–7999

    CAS  Google Scholar 

  37. Santos JI, Martín-Sampedro R, Fillat Ú, Oliva JM, Negro MJ, Ballesteros M, Eugenio ME, Ibarra D. Int J Polym Sci, 2015, 2015: 314891

    Google Scholar 

  38. Sridevi C, Velraj G. J Mol Structure, 2012, 1019: 50–60

    CAS  Google Scholar 

  39. Arasi AY, Jeyakumari JJL, Sundaresan B, Dhanalakshmi V, Anbarasan R. SpectroChim Acta Part A-Mol Biomol Spectr, 2009, 74: 1229–1234

    Google Scholar 

  40. Shen X, Dai J, Liu Y, Liu X, Zhu J. Polymer, 2017, 122: 258–269

    CAS  Google Scholar 

  41. Kang E. Prog Polym Sci, 1998, 23: 277–324

    CAS  Google Scholar 

  42. Trchová M, Sedĕnková I, Konyushenko EN, Stejskal J, Holler P, Cirić-Marjanović G. J Phys Chem B, 2006, 110: 9461–9468

    Google Scholar 

  43. Wang A, Guan C, Shan G, Chen Y, Wang C, Liu Y. Microchim Acta, 2019, 186: 644

    Google Scholar 

  44. Ding H, Yu SB, Wei JS, Xiong HM. ACS Nano, 2016, 10: 484–491

    CAS  Google Scholar 

  45. Habibi D, Faraji AR, Arshadi M, Fierro JLG. J Mol Catal A-Chem, 2013, 372: 90–99

    CAS  Google Scholar 

  46. Zhang Y, Liu JX, Qian K, Jia A, Li D, Shi L, Hu J, Zhu J, Huang W. Angew Chem Int Ed, 2021, 60: 12074–12081

    CAS  Google Scholar 

  47. Wu Z, Guo K, Cao S, Yao W, Piao L. Nano Res, 2020, 13: 551–556

    CAS  Google Scholar 

  48. Tomishige K, Nakagawa Y, Tamura M. Green Chem, 2017, 19: 2876–2924

    CAS  Google Scholar 

  49. Zhou D, Zhang L, Liu X, Qi H, Liu Q, Yang J, Su Y, Ma J, Yin J, Wang A. Nano Res, 2022, 15: 519–527

    CAS  Google Scholar 

  50. Duan J, Zhou Y, Ren Y, Feng D, Shang J, Ge H, Gao J, Yang J, Qin Y. Nano Res, 2022, 15: 5970–5976

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported from the National Natural Science Foundation of China (21802094, 22272127, 22002118, and 22172119), the National Science Fund for Distinguished Young Scholars (21825204), the Fundamental Research Funds for the Central Universities (D5000210666), and the Natural Science Basic Research Plan in Shaanxi Province of China (2021JM-047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huibin Ge or Yong Qin.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2022_1414_MOESM1_ESM.pdf

Understanding the intrinsic synergistic mechanism between Pt-O-Ti interface sites and TiO2 surface sites of Pt/TiO2 catalysts in Fenton-like reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Ge, H., Yi, S. et al. Understanding the intrinsic synergistic mechanism between Pt-O-Ti interface sites and TiO2 surface sites of Pt/TiO2 catalysts in Fenton-like reaction. Sci. China Chem. 65, 2596–2603 (2022). https://doi.org/10.1007/s11426-022-1414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1414-5

Keywords

Navigation