Skip to main content
Log in

Redispersion of Pt nanoparticles encapsulated within ZSM-5 in oxygen and catalytic properties in partial oxidation of methane

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Active metal agglomeration in heterogeneous catalysis is a crucial reason of catalyst deactivation. Consequently, many methods to inhibit the sintering by redispersing metal course have been widely studied. However, the redispersion conditions of catalysts with different structures may also be different. In our work, we prepared Pt/ZSM-5 and Pt@ZSM-5 catalysts to study that the redispersion of Pt under different pretreatment conditions. Characterizations demonstrate that only Pt@ZSM-5 (4R, 5O) implements Pt redispersion. The redispersion of Pt nanoparticles is due to the encapsulation constraint of the ZSM-5 as well as Ptδ+ species migrate in oxygen atmosphere at 500 °C, which are anchored to the –(–O–Si≡)y site in ZSM-5 by strong metal support interaction. Benefiting from highly dispersed active sites, Pt@ZSM-5 (4R, 5O) catalyst also shows excellently catalytic activity, stability and anti-carbon deposition ability for partial oxidation of methane (POM). The results provide ideas for the preparation of catalysts for high temperature oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Heubaum, F. Biermann, Energy Policy 87, 229–239 (2015)

    Article  Google Scholar 

  2. L. Weger, A. Abánades, T. Butler, Int. J. Hydrogen Energy 42(1), 720–731 (2017)

    Article  CAS  Google Scholar 

  3. C.M. Ding, W.L. Liu, J.W. Wang, P. Liu, Fuel 162, 148–154 (2015)

    Article  CAS  Google Scholar 

  4. C.M. Ding, J.W. Wang, G.G. Ai, Fuel 175, 1–12 (2016)

    Article  CAS  Google Scholar 

  5. Q.L. Duan, J.W. Wang, C.M. Ding, Fuel 193, 112–118 (2017)

    Article  CAS  Google Scholar 

  6. H.M. Liu, H. Wu, D.H. He, Fuel Process. Technol. 119, 81–86 (2014)

    Article  CAS  Google Scholar 

  7. C.M. Ding, G.G. Ai, K. Zhang, J.W. Wang, Int. J. Hydrogen Energy 40(21), 6835–6843 (2015)

    Article  CAS  Google Scholar 

  8. S.S. Guo, J.W. Wang, C.M. Ding, Int. J. Hydrogen Energy 43(13), 6603–6613 (2018)

    Article  CAS  Google Scholar 

  9. C.M. Ding, X.F. Gao, Y.L. Han, J. Energy Chem. 24(1), 45–53 (2015)

    Article  Google Scholar 

  10. Y.J. Chen, S.F. Ji, C. Chen, Q. Peng, D.S. Wang, Y.D. Li, Joule 2(7), 1242–1264 (2018)

    Article  CAS  Google Scholar 

  11. R. Lang, X.R. Du, Y.K. Huang, X.Z. Jiang, Q.G. Zhang, T. Zhang, Chem. Rev. 120(21), 11986–12043 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. J.Y. Liu, ACS Catal. 7(1), 34–59 (2017)

    Article  CAS  Google Scholar 

  13. J. Gao, Y.T. Zheng, J.M. Jehng, Y.D. Tang, Science 348(6235), 686–690 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. H.S. Wei, X.Y. Liu, A.Q. Wang, L.L. Zhang, T. Zhang, Nat. Commun. 5(1), 1–8 (2014)

    CAS  Google Scholar 

  15. L.W. Guo, P.P. Du, X.P. Fu, J. Zeng, C.J. Jia, C.H. Yan, Nat. Commun. 7(1), 1–8 (2016)

    Google Scholar 

  16. D.N. Ding, K. Shen, X.D. Chen, J.Y. Chen, R.F. Wu, T. Fan, Y.W. Li, ACS Catal. 8(9), 7879–7888 (2018)

    Article  CAS  Google Scholar 

  17. J.D. Kistler, N. Chotigkrai, P.H. Xu, B. Enderle, Angew. Chem. Int. Ed. 53(34), 8904–8907 (2014)

    Article  CAS  Google Scholar 

  18. L. Nie, D.H. Mei, H.F. Xiong, B. Peng, K.D. Abhayak, Y. Wang, Science 358(6369), 1419–1423 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. J. Zhang, X. Wu, W.C. Cheong, W.X. Chen, R. Lin, J. Li, L.R. Zheng, Nat. Commun. 9(1), 1–8 (2018)

    Article  CAS  Google Scholar 

  20. L.C. Liu, A. Corma, Chem. Rev. 118(10), 4981–5079 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. I. Juhwan, C. Minkee, ACS Catal. 6(5), 2819–2826 (2016)

    Article  CAS  Google Scholar 

  22. S.W. Li, A. Tuel, J.L. Rousset, F. Morfin, M. Aouine, ChemNanoMat 2(6), 534–539 (2016)

    Article  CAS  Google Scholar 

  23. K. Morgan, A. Goguet, C. Hardacre, ACS Catal. 5(6), 3430–3445 (2015)

    Article  CAS  Google Scholar 

  24. M. Moline, J.E. Gabay, C.E. Kliewer, J. Am. Chem. Soc. 138(48), 15743–15750 (2016)

    Article  CAS  Google Scholar 

  25. K. Morgan, R. Burch, M. Daous, Catal. Struct. React. 1(3), 120–124 (2015)

    Google Scholar 

  26. J. Jones, H. Xiong, A.T. DeLaRiva, Science 353(6295), 150–154 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. R.X. Qin, P.X. Liu, G. Fu, N.F. Zheng, Small Methods 2(1), 1700286 (2018)

    Article  CAS  Google Scholar 

  28. Z. Li, S.F. Ji, Y.W. Liu, C. Xing, Y.D. Li, Z.Q. Niu, Chem. Rev. 120(2), 623–682 (2019)

    Article  PubMed  CAS  Google Scholar 

  29. X.Y. Li, H.P. Rong, J.T. Zhang, D.S. Wang, Y.D. Li, Nano Res. 13(7), 1842–1855 (2020)

    Article  CAS  Google Scholar 

  30. O. Trenton, S.I. Zones, I. Erique, J. Catal. 339, 195–208 (2016)

    Article  CAS  Google Scholar 

  31. Y.S. Tao, H. Kanoh, K. Kaneko, J. Am. Chem. Soc. 125(20), 6044–6045 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. M. Shamzhy, M. Opanasenko, P. Concepción, Chem. Soc. Rev. 48(4), 1095–1149 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. X. Liu, N. Chen, B.Q. Han, X.C. Xiao, G. Chen, Nanoscale 7(36), 14872–14880 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. X.X. Li, X.P. Niu, S.K. Zhu, S. Xu, Z.Y. Wang, X.W. Zhang, Ind. Eng. Chem. Res. 60(7), 2838–2848 (2021)

    Article  CAS  Google Scholar 

  35. J. Guo, C.M. Ding, Z.L. Ma, K. Zhang, J.W. Wang, Fuel 289, 119839 (2021)

    Article  CAS  Google Scholar 

  36. N. Wang, Q.M. Sun, R.S. Bai, X. Li, J.H. Yu, J. Am. Chem. Soc. 138(24), 7484–7487 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. M. Moliner, J. Gabay, C. Kliewer, ACS Catal. 8(10), 9520–9528 (2018)

    Article  CAS  Google Scholar 

  38. A. Corma, H. Garcia, Top. Catal. 48(1), 8–31 (2008)

    Article  CAS  Google Scholar 

  39. L.C. Liu, U. Diaz, R. Arenal, G. Agostini, A. Corma, Nat. Mater. 16(1), 132–138 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. Q.M. Sun, N. Wang, T.J. Zhang, Q.H. Zhang, J.H. Yu, Angew. Chem. Int. Ed. 58(51), 18570–18576 (2019)

    Article  CAS  Google Scholar 

  41. H.L. Zhao, B.J. Tang, J. Tang, Y.F. Cai, Ind. Eng. Chem. Res. 60(19), 7132–7144 (2021)

    Article  CAS  Google Scholar 

  42. L.H. Shi, G.D. Liu, H.C. Guo, Catal. Commun. 101, 111–115 (2017)

    Article  CAS  Google Scholar 

  43. L.C. Liu, M. Lopez-Haro, C.W. Lopes, C.G. Li, A. Corma, Nat. Mater. 18(8), 866–873 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. C.B. Chen, M.Y. Chen, B. Zada, RSC Adv. 6(113), 112477–112485 (2016)

    Article  CAS  Google Scholar 

  45. S.S. Huang, D.Y. Yang, Q.X. Tang, W. Deng, Microporous Mesoporous Mater. 305, 110292 (2020)

    Article  CAS  Google Scholar 

  46. X.P. Niu, F.X. Feng, G. Yuan, X.W. Zhang, Q.F. Wang, Nanomaterials 9(3), 362–377 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  47. G.D. Liu, J.X. Liu, N. He, S.S. Sheng, G.R. Wang, J. Energy Chem. 34, 96–103 (2019)

    Article  Google Scholar 

  48. T.Y. Liang, J.L. Chen, Z.F. Qin, J.F. Li, J.G. Wang, ACS Catal. 6(11), 7311–7325 (2016)

    Article  CAS  Google Scholar 

  49. C.G. Li, A. Vidal-Moya, P.J. Miguel, A. Corma, ACS Catal. 8(8), 7688–7697 (2018)

    Article  CAS  Google Scholar 

  50. Y. Zhao, W. Tan, H.Y. Wu, A.F. Zhang, M. Liu, Catal. Today 160(1), 179–183 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Natural Science Foundation of China, grant number 21978189, 21706178; Natural Science Foundation of Shanxi Province, grant number 201801D221074, 201801D121058; China Postdoctoral Science Foundation 2019M651079. Authors also gratefully acknowledge the support and guidance of the 602 groups of teachers from Institute of Coal Chemistry, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

TW performed catalyst preparation, catalytic performance evaluation and wrote the main manuscript text. ZM, LM and MY participated in the design of the characterization. KZ provided support for testing equipment. CD, JW designed the study, analyzed the data and co-wrote the paper all the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Chuanmin Ding.

Ethics declarations

Conflict of interest

Authors declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Ding, C., Ma, L. et al. Redispersion of Pt nanoparticles encapsulated within ZSM-5 in oxygen and catalytic properties in partial oxidation of methane. J Porous Mater 29, 1337–1347 (2022). https://doi.org/10.1007/s10934-022-01250-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01250-0

Keywords

Navigation