Skip to main content
Log in

Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We developed a strategy based on coordination polymer to synthesize singleatom site Fe/N and S-codoped hierarchical porous carbon (Fe1/N,S-PC). The as-obtained Fe1/N,S-PC exhibited superior oxygen reduction reaction (ORR) performance with a half-wave potential (E1/2, 0.904 V vs. RHE) that was better than that of commercial Pt/C (E1/2, 0.86 V vs. RHE), single-atom site Fe/N-doped hierarchical porous carbon (Fe1/N-PC) without S-doped (E1/2, 0.85 V vs. RHE), and many other nonprecious metal catalysts in alkaline medium. Moreover, the Fe1/N,S-PC revealed high methanol tolerance and firm stability. The excellent electrocatalytic activity of Fe1/N,S-PC is attributed to the synergistic effects from the atomically dispersed porphyrin-like Fe-N4 active sites, the heteroatom codoping (N and S), and the hierarchical porous structure in the carbon materials. The calculation based on density functional theory further indicates that the catalytic performance of Fe1/N,S-PC is better than that of Fe1/N-PC owing to the sulfur doping that yielded different rate-determining steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, M.; Wang, H.-L.; Guo, S. J. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 2016, 45, 1273–1307.

    Article  Google Scholar 

  2. Becknell, N.; Son, Y.; Kim, D.; Li, D. G.; Yu, Y.; Niu, Z. Q.; Lei, T.; Sneed, B. T.; More, K. L.; Markovic, N. M. et al. Control of architecture in rhombic dodecahedral Pt–Ni nanoframe electrocatalysts. J. Am. Chem. Soc. 2017, 139, 11678–11681.

    Article  Google Scholar 

  3. Shen, M. X.; Wei, C. T.; Ai, K. L.; Lu, L. H. Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Res. 2017, 10, 1449–1470.

    Article  Google Scholar 

  4. Shang, C. Q.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Liu, M.; Zhu, J.; Zhu, Y. G.; Zhou, L J..; Cheng, H.; Gu, Y. Y. et al. Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts. Sci. China Mater. 2017, 60, 937–946.

    Article  Google Scholar 

  5. Wu, S. S.; Zhu, Y. G.; Huo, Y. F.; Luo, Y. C.; Zhang, L. H.; Wan, Y.; Nan, B.; Cao, L. J.; Wang, Z. Y.; Li, M. C. et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 2017, 60, 654–663.

    Article  Google Scholar 

  6. Wang, Q.; Zhou, Z. Y.; Lai, Y. J.; You, Y.; Liu, J. G.; Wu, X. L.; Terefe, E.; Chen, C.; Song, L.; Rauf, M. et al. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 2014, 136, 10882–10885.

    Article  Google Scholar 

  7. Wang, J.; Li, L. Q.; Chen, X. L.; Lu, Y.; L. Yang, W. S.; Duan X. A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various pH media. Nano Res. 2017, 10, 2508–2518.

    Article  Google Scholar 

  8. Jing, H. Y.; Song, X. D.; Ren, S. Z.; Shi, Y. T.; An, Y. L.; Yang, Y.; Feng, M. Q.; Ma, S. B.; Hao, C. ZIF-67 derived nanostructures of Co/CoO and Co@N-doped graphitic carbon as counter electrode for highly efficient dye-sensitized solar cells. Electrochim. Acta 2016, 213, 252–259.

    Article  Google Scholar 

  9. Chen, M.; Zhao, G.; Shao, L.-L.; Yuan, Z.-Y.; Jing, Q.-S.; Huang, K.-J.; Huang, Z.-Y.; Zhao, X.-H.; Zou, G.-D. Controlled synthesis of nickel encapsulated into nitrogendoped carbon nanotubes with covalent bonded interfaces: The structural and electronic modulation strategy for an efficient electrocatalyst in dye-sensitized solar cells. Chem. Mater. 2017, 29, 9680–9694.

    Article  Google Scholar 

  10. Ma, X.; Zhao, X.; Huang, J. S.; Sun, L. T.; Li, Q.; Yang, X. R. Fine Co nanoparticles encapsulated in a N-doped porous carbon matrix with superficial N-doped porous carbon nanofibers for efficient oxygen reduction. ACS Appl. Mater. Interfaces 2017, 9, 21747–21755.

    Article  Google Scholar 

  11. Zhu, Q.-L.; Xia, W.; Zheng, L.-R.; Zou, R. Q.; Liu, Z.; Xu, Q. Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2017, 2, 504–511.

    Article  Google Scholar 

  12. Feng, S. Q.; Liu, C.; Chai, Z. G.; Li, Q.; Xu, D. S. Cobalt-based hydroxide nanoparticles@N-doping carbonic frameworks core–shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions. Nano Res. 2018, 11, 1482–1489.

    Article  Google Scholar 

  13. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Cai, Q. R.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336–3339.

    Article  Google Scholar 

  14. Yan, D. F.; Guo, L.; Xie, C.; Wang, Y. Y.; Li, Y. X.; Li, H.; Wang, S. Y. N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction. Sci. China Mater. 2018, 61, 679–685.

    Article  Google Scholar 

  15. Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.

    Article  Google Scholar 

  16. Sun, M.; Zhang, G.; Liu, H. J.; Liu, Y.; Li, J. H. α- and γ-Fe2O3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction. Sci. China Mater. 2015, 58, 683–692.

    Article  Google Scholar 

  17. Xiao, J. W.; Xu, Y. Y.; Xia, Y. T.; Xi, J. B.; Wang, S. Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen doped graphitic carbon spheres as a highly active, stable, and methanol tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy 2016, 24, 121–129.

    Article  Google Scholar 

  18. Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 56, 13800–13804.

    Article  Google Scholar 

  19. Zhang, G. X.; Jin, X. Y.; Li, H. Y.; Wang, L.; Hu, C. J.; Sun, X. M. N-doped crumpled graphene: Bottom-up synthesis and its superior oxygen reduction performance. Sci. China Mater. 2016, 59, 337–347.

    Google Scholar 

  20. Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

    Article  Google Scholar 

  21. Wang, G.; Sun, Y. H.; Li, D. B.; Liang, H.-W.; Dong, R. H.; Feng, X. L.; Müllen, K. Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through selfassembly of colloidal silica. Angew. Chem., Int. Ed. 2015, 54, 15191–15196.

    Article  Google Scholar 

  22. Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.

    Article  Google Scholar 

  23. Liang, H. W.; Wei, W.; Wu, Z. S.; Feng X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.

    Article  Google Scholar 

  24. Masa, J.; Xia, W.; Muhler, M.; Schuhmann, W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 10102–10120.

    Article  Google Scholar 

  25. Liu, D. B.; Wu, C. Q.; Chen, S. M.; Ding, S. Q.; Xie, Y. F.; Wang, C. D.; Wang, T.; Haleem, Y. A.; Rehman, Z.; Sang, Y. et al. In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Res. 2018, 11, 2217–2228.

    Article  Google Scholar 

  26. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

    Article  Google Scholar 

  27. Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  Google Scholar 

  28. Song, P.; Luo, M.; Liu, X. Z.; Xing, W.; Xu, W. L.; Jiang Z.; Gu, L. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1700802. DOI: 10.1002/adfm.201700802.

    Article  Google Scholar 

  29. Han, Y. H.; Wang, Y. G.; Chen, W. X.; Xu, R. R.; Zheng, L. R.; Zhang, J.; Luo, J.; Shen, R. A.; Zhu, Y. Q.; Cheong, W. C. et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: Superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2017, 139, 17269–17272.

    Article  Google Scholar 

  30. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  Google Scholar 

  31. Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

    Article  Google Scholar 

  32. Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Singleatom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

    Article  Google Scholar 

  33. Wang, Y. L.; Zhu, C. Z.; Feng, S.; Shi, Q. R.; Fu, S. F.; Du, D.; Zhang, Q.; Lin, Y. H. Interconnected Fe, S, N-codoped hollow and porous carbon nanorods as efficient electrocatalysts for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 40298–40306.

    Article  Google Scholar 

  34. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

    Article  Google Scholar 

  35. Nicklass, A.; Dolg, M.; Stoll, H.; Preuss, H. Ab initio energy-adjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities. J. Chem. Phys. 1995, 102, 8942–8952.

    Article  Google Scholar 

  36. Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.

    Google Scholar 

  37. Bondino, F.; Magnano, E.; Malvestuto, M.; Parmigiani, F.; McGuire, M. A.; Sefat, A. S.; Sales, B. C.; Jin, R.; Mandrus, D.; Plummer, E. W. et al. Evidence for strong itinerant spin fluctuations in the normal state of CeFeAsO0.89F0.11 ironoxypnictide superconductors. Phys. Rev. Lett. 2008, 101, 267001.

    Article  Google Scholar 

  38. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

    Article  Google Scholar 

  39. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by China Ministry of Science and Technology under Contract of 2016YFA (0202801), the National Natural Science Foundation of China (Nos. 21521091, 21390393, U1463202, 21573119, 21590792, and 21501004). We thanks for the help from the Beijing Synchrotron Radiation Facility (BSRF) and National Synchrotron Radiation Laboratory (NSRL) in characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Chen or Chen Chen.

Electronic supplementary material

12274_2018_2149_MOESM1_ESM.pdf

Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Chen, X., Liu, S. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 11, 6260–6269 (2018). https://doi.org/10.1007/s12274-018-2149-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2149-y

Keywords

Navigation