Skip to main content
Log in

A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing high-performance nonprecious-metal electrocatalysts for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy conversion and storage systems. Toward that end, rational catalyst design principles that lead to highly active catalytic centers and enhanced active site accessibility are undoubtedly of paramount importance. Here, we used Prussian blue nanoparticles to anchor Fe/Fe3C species to nitrogen-doped reduced graphene oxide aerogels as ORR catalysts. The strong interaction between nanosized Fe3C and the graphitic carbon shell led to synergistic effects in the ORR, and the protection of the carbon shell guaranteed stability of the catalyst. As a result, the aerogel electrocatalyst displayed outstanding activity in the ORR on par with the state-of-the-art Pt/C catalyst at the same mass loading in alkaline media, good performance in acidic media, and excellent stability and crossover tolerance that rivaled that of the best nonprecious-metal ORR electrocatalysts reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

    Article  Google Scholar 

  2. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

    Article  Google Scholar 

  3. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    Article  Google Scholar 

  4. Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786.

    Article  Google Scholar 

  5. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  Google Scholar 

  6. Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

    Article  Google Scholar 

  7. Chung, D. Y.; Kim, H. I.; Chung, Y. H.; Lee, M. J.; Yoo, S. J.; Bokare, A. D.; Choi, W.; Sung, Y. E. Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell. Sci. Rep. 2014, 4, 7450.

    Article  Google Scholar 

  8. Ma, X. M.; Meng, H.; Cai, M.; Shen, P. K. Bimetallic carbide nanocomposite enhanced Pt catalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 1954–1957.

    Article  Google Scholar 

  9. Yin, H. J.; Tang, H. J.; Wang, D.; Gao, Y.; Tang, Z. Y. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 2012, 6, 8288–8297.

    Article  Google Scholar 

  10. Zhao, S. L.; Yin, H. J.; Du, L.; Yin, G. P.; Tang, Z. Y.; Liu, S. Q. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 3719–3724.

    Article  Google Scholar 

  11. Zhou, R. F.; Qiao, S. Z. An Fe/N co-doped graphitic carbon bulb for high-performance oxygen reduction reaction. Chem. Commun. 2015, 51, 7516–7519.

    Article  Google Scholar 

  12. Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metalfree bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

    Article  Google Scholar 

  13. Wu, Z. S.; Chen, L.; Liu, J. Z.; Parvez, K.; Liang, H. W.; Shu, J.; Sachdev, H.; Graf, R.; Feng, X. L.; Müllen, K. Highperformance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. Adv. Mater. 2014, 26, 1450–1455.

    Article  Google Scholar 

  14. Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

    Article  Google Scholar 

  15. Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562.

    Article  Google Scholar 

  16. Ma, R. G.; Ren, X. D.; Xia, B. Y.; Zhou, Y.; Sun, C.; Liu, Q.; Liu, J. J.; Wang, J. C. Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 2016, 9, 808–819.

    Article  Google Scholar 

  17. Lei, Y. P.; Shi, Q.; Han, C.; Wang, B.; Wu, N.; Wang, H.; Wang, Y. D. N-doped graphene grown on silk cocoonderived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production. Nano Res. 2016, 9, 2498–2509.

    Article  Google Scholar 

  18. Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

    Article  Google Scholar 

  19. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  20. Xia, W.; Zou, R. Q.; An, L.; Xia, D. G.; Guo, S. J. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576.

    Article  Google Scholar 

  21. Wu, Z.-S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Mü llen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.

    Article  Google Scholar 

  22. Fu, G. T.; Liu, Z. Y.; Zhang, J. F.; Wu, J. Y.; Xu, L.; Sun, D. M.; Zhang, J. B.; Tang, Y. W.; Chen, P. Spinel MnCO2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst. Nano Res. 2016, 9, 2110–2122.

    Article  Google Scholar 

  23. Wei, P. J.; Yu, G. Q.; Naruta, Y.; Liu, J. G. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew. Chem., Int. Ed. 2014, 53, 6659–6663.

    Article  Google Scholar 

  24. Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Kim, M. G.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.

    Google Scholar 

  25. Tang, H. J.; Yin, H. J.; Wang, J. Y.; Yang, N. L.; Wang, D.; Tang, Z. Y. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for highperformance oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 5585–5589.

    Article  Google Scholar 

  26. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

  27. Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. F. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem., Int. Ed. 2014, 53, 3675–3679.

    Article  Google Scholar 

  28. Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527.

    Article  Google Scholar 

  29. Zhao, D.; Shui, J. L.; Chen, C.; Chen, X. Q.; Reprogle, B. M.; Wang, D. P.; Liu, D. J. Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells. Chem. Sci. 2012, 3, 3200–3205.

    Article  Google Scholar 

  30. Lee, J. S.; Park, G. S.; Kim, S. T.; Liu, M. L.; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3Cfunctionalized melamine foam. Angew. Chem. Int. Ed. 2013, 52, 1026–1030.

    Article  Google Scholar 

  31. Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179–8183.

    Article  Google Scholar 

  32. Zhang, S. M.; Zhang, H. Y.; Liu, Q.; Chen, S. L. Fe-N doped carbon nanotube/graphene composite: Facile synthesis and superior electrocatalytic activity. J. Mater. Chem. A 2013, 1, 3302–3308.

    Article  Google Scholar 

  33. Masa, J.; Xia, W.; Muhler, M.; Schuhmann, W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 10102–10120.

    Article  Google Scholar 

  34. Huang, H.; Feng, X.; Du, C. C.; Wu, S. Y.; Song, W. B. One-step pyrolytic synthesis of small iron carbide nanoparticles/ 3D porous nitrogen-rich graphene for efficient electrocatalysis. J. Mater. Chem. A 2015, 3, 4976–4982.

    Article  Google Scholar 

  35. Pintado, S.; Goberna-Ferrón, S.; Escudero-Adán, E. C.; Galán-Mascaró s, J. R. Fast and persistent electrocatalytic water oxidation by Co-Fe Prussian blue coordination polymers. J. Am. Chem. Soc. 2013, 135, 13270–13273.

    Article  Google Scholar 

  36. Lee, J. S.; Nam, G.; Sun, J.; Higashi, S.; Lee, H. W.; Lee, S.; Chen, W.; Cui, Y.; Cho, J. Composites of a Prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn–air battery. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201601052.

  37. Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energ. Environ. Sci. 2015, 8, 1837–1866.

    Article  Google Scholar 

  38. Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

    Article  Google Scholar 

  39. Hou, Y.; Huang, T. Z.; Wen, Z. H.; Mao, S.; Cui, S. M.; Chen, J. H. Metal-organic framework-derived nitrogendoped core–shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1400337.

    Article  Google Scholar 

  40. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.

    Article  Google Scholar 

  41. Mao, S.; Lu, G. H.; Chen, J. H. Three-dimensional graphenebased composites for energy applications. Nanoscale 2015, 7, 6924–6943.

    Article  Google Scholar 

  42. Kong, B. A.; Sun, X. T.; Selomulya, C.; Tang, J.; Zheng, G. F.; Wang, Y. Q.; Zhao, D. Y. Sub-5 nm porous nanocrystals: Interfacial site-directed growth on graphene for efficient biocatalysis. Chem. Sci. 2015, 6, 4029–4034.

    Article  Google Scholar 

  43. Cui, X. Y.; Yang, S. B.; Yan, X. X.; Leng, J. G.; Shuang, S.; Ajayan, P. M.; Zhang, Z. J. Pyridinic-nitrogen-dominated graphene aerogels with Fe–N–C coordination for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 5708–5717.

    Article  Google Scholar 

  44. Xu, J. B.; Zhao, T. S. Mesoporous carbon with uniquely combined electrochemical and mass transport characteristics for polymer electrolyte membrane fuel cells. RSC Adv. 2013, 3, 16–24.

    Article  Google Scholar 

  45. Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011, 11, 2472–2477.

    Article  Google Scholar 

  46. Kobayashi, M.; Niwa, H.; Saito, M.; Harada, Y.; Oshima, M.; Ofuchi, H.; Terakura, K.; Ikeda, T.; Koshigoe, Y.; Ozaki, J. et al. Indirect contribution of transition metal towards oxygen reduction reaction activity in iron phthalocyaninebased carbon catalysts for polymer electrolyte fuel cells. Electrochim. Acta 2012, 74, 254–259.

    Article  Google Scholar 

  47. Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from Global Climate and Energy Projects (GCEP) at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cui.

Electronic supplementary material

12274_2016_1300_MOESM1_ESM.pdf

A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, H., Lin, D. et al. A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Res. 10, 1213–1222 (2017). https://doi.org/10.1007/s12274-016-1300-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1300-x

Keywords

Navigation