Skip to main content
Log in

The split property for quantum field theories in flat and curved spacetimes

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

The split property expresses a strong form of independence of spacelike separated regions in algebraic quantum field theory. In Minkowski spacetime, it can be proved under hypotheses of nuclearity. An expository account is given of nuclearity and the split property, and connections are drawn to the theory of quantum energy inequalities. In addition, a recent proof of the split property for quantum field theory in curved spacetimes is outlined, emphasising the essential ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Fermi fields, of course, anticommute at spacelike separation, and are excluded from the algebra of observables, though operators constructed from products of even numbers of Fermi fields qualify as observables.

  2. A normal state on a von Neumann algebra can be defined abstractly in terms of its continuity properties; however, when the von Neumann algebra acts on a Hilbert space, the normal states are precisely those that can be represented by density matrix states on the Hilbert space [5, Thm 2.4.21].

  3. Einstein causality must be modified for field algebras of fermionic systems. If \(O_2\) and \(O_3\) are spacelike separated, the corresponding field algebras \({\mathfrak F}(O_i)\) obey a graded commutation relation in place of (1); however, by introducing a suitable unitary twist map Z on \(\mathscr {H}\), and defining the twisted algebra \({\mathfrak F}^t(O_3)= Z{\mathfrak F}(O_3)Z^{-1}\), Einstein causality can be reformulated as \([{\mathfrak F}(O_2),{\mathfrak F}^t(O_3)]=0\). Then the relevant form of the split property is that the inclusion \({\mathfrak F}(O_1)\subset {\mathfrak F}^t(O_3)'\) splits.

  4. This is a well-known technique in the theory of Tauberian estimates of sums and integrals, see e.g.,  [44].

  5. That is, its restriction to any local von Neumann algebra (in the vacuum representation) of a relatively compact region is normal.

  6. Much more general results are obtained in [24]. The Fourier transform is defined here by \(\hat{g}(u)=\int dt\,e^{-iut}g(t)\).

  7. If the transform \(\hat{g}\) decays exponentially then g extends to an analytic function in a neighbourhood of the real axis; as g is compactly supported, it would then follow that \(g\equiv 0\).

  8. The annihilation operators used in Sect. 3 are \(\mathsf{a}(u)=\int d^3{\varvec{k}}/(2\pi )^3 a({\varvec{k}}) \overline{u({\varvec{k}})}\).

References

  1. Baumgärtel, H., Wollenberg, M.: Causal nets of operator algebras. Akademie-Verlag, Berlin (1992)

    MATH  Google Scholar 

  2. Blackadar, B.: Operator algebras, encyclopaedia of mathematical sciences, vol. 122. Springer-Verlag, Berlin, : theory of \(C{^{*}}\)-algebras and von Neumann algebras. Operator Algebras and Non-commutative Geometry, III (2006)

  3. Borchers, H.J.: Über die Vollständigkeit lorentz-invarianter Felder in einer zeitartigen Röhre. Nuovo Cimento 10(19), 787–793 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bostelmann, H., Fewster, C.J.: Quantum inequalities from operator product expansions. Commun. Math. Phys. 292, 761–795 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics: 1, 2nd edn. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  6. Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.): Advances in algebraic quantum field theory. Mathematical physics studies. Springer International Publishing (2015)

  7. Brunetti, R., Fredenhagen, K., Imani, P., Rejzner, K.: The locality axiom in quantum field theory and tensor products of \(C^*\)-algebras. Rev. Math. Phys 26:1450010, 10 (2014)

  8. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchholz, D.: Product states for local algebras. Commun. Math. Phys. 36, 287–304 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buchholz, D., D’Antoni, C., Fredenhagen, K.: The universal structure of local algebras. Commun. Math. Phys. 111, 123–135 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buchholz, D., Doplicher, S., Longo, R.: On Noether’s theorem in quantum field theory. Ann. Phys. 170, 1–17 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buchholz, D., Junglas, P.: Local properties of equilibrium states and the particle spectrum in quantum field theory. Lett. Math. Phys. 11, 51–58 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buchholz, D., Junglas, P.: On the existence of equilibrium states in local quantum field theory. Commun. Math. Phys. 121, 255–270 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Buchholz, D., Porrmann, M.: How small is the phase space in quantum field theory? Ann. Inst. H. Poincaré Phys. Théor. 52, 237–257 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Buchholz, D., Størmer, E.: Superposition, transition probabilities and primitive observables in infinite quantum systems. Commun. Math. Phys. 339, 309–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Buchholz, D., Wichmann, E.H.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106, 321–344 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carpi, S.: Quantum Noether’s theorem and conformal field theory: a study of some models. Rev. Math. Phys. 11, 519–532 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. D’Antoni, C., Doplicher, S., Fredenhagen, K., Longo, R.: Convergence of local charges and continuity properties of \(W^*\)-inclusions. Commun. Math. Phys. 110, 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. D’Antoni, C., Hollands, S.: Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved spacetime. Commun. Math. Phys. 261, 133–159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. D’Antoni, C., Longo, R.: Interpolation by type I factors and the flip automorphism. J. Funct. Anal. 51, 361–371 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Doplicher, S., Longo, R.: Local aspects of superselection rules. II. Comm. Math. Phys. 88, 399–409 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Epstein, H., Glaser, V., Jaffe, A.: Nonpositivity of the energy density in quantized field theories. Il. Nuovo Cim. 36, 1016–1022 (1965)

    Article  MathSciNet  Google Scholar 

  24. Fewster, C.J.: A general worldline quantum inequality. Class. Quant. Grav. 17, 1897–1911 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fewster, C.J.: Quantum energy inequalities and stability conditions in quantum field theory. In: Boutet de Monvel, A., Buchholz, D., Iagolnitzer, D., Moschella, U. (eds.) Rigorous quantum field theory: a festschrift for Jacques Bros, progress in mathematics, vol. 251. Birkhäuser, Boston (2006)

    Google Scholar 

  26. Fewster, C.J.: Lectures on quantum energy inequalities (2012). arXiv:1208.5399

  27. Fewster, C.J.: The split property for locally covariant quantum field theories in curved spacetime. Lett. Math. Phys. 105, 1633–1661 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fewster, C.J., Eveson, S.P.: Bounds on negative energy densities in flat spacetime. Phys. Rev. D 58, 084010 (1998)

    Article  MathSciNet  Google Scholar 

  29. Fewster, C.J., Ford, L.H.: Probability distributions for quantum stress tensors measured in a finite time interval. Phys. Rev. D 92, 105008 (2015)

    Article  MathSciNet  Google Scholar 

  30. Fewster, C.J., Ojima, I., Porrmann, M.: \(p\)-nuclearity in a new perspective. Lett. Math. Phys. 73, 1–15 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fewster, C.J., Verch, R.: Stability of quantum systems at three scales: passivity, quantum weak energy inequalities and the microlocal spectrum condition. Commun. Math. Phys. 240, 329–375 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fewster, C.J., Verch, R.: Algebraic quantum field theory in curved spacetimes. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in algebraic quantum field theory, pp. 125–189. Springer International Publishing, New York (2015)

    Chapter  Google Scholar 

  33. Ford, L.H.: Quantum coherence effects and the second law of thermodynamics. Proc. R. Soc. Lond. A 364, 227–236 (1978)

    Article  Google Scholar 

  34. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. II. Ann. Phys. 136, 243–272 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Haag, R.: Local quantum physics: fields, particles, algebras. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  36. Haagerup, U.: Connes’ bicentralizer problem and uniqueness of the injective factor of type III\(_1\). Acta Math. 158, 95–148 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Horujy, S.S., Dadashyan, K.Y.: Causal independence of free quantum fields. Czechoslovak J. Phys. B 29, 29–32 (1979), symposium on Mathematical Methods in the Theory of Elementary Particles (Liblice, 1978)

  38. Ingham, A.E.: A note on fourier transforms. J. Lond. Math. Soc. S1–9, 29 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kay, B.S.: Linear spin-zero quantum fields in external gravitational and scalar fields. I. A one particle structure for the stationary case. Commun. Math. Phys. 62, 55–70 (1978)

    Article  MathSciNet  Google Scholar 

  40. Lechner, G.: Algebraic constructive quantum field theory: Integrable models and deformation techniques. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in algebraic quantum field theory, pp. 397–448. Springer International Publishing, New York (2015)

    Chapter  Google Scholar 

  41. Lechner, G., Sanders, K.: Modular nuclearity: a generally covariant perspective. Axioms 5, 5 (2016)

  42. Morsella, G., Tomassini, L.: From global symmetries to local currents: the free (scalar) case in four dimensions. Rev. Math. Phys. 22, 91–115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nomizu, K., Ozeki, H.: The existence of complete Riemannian metrics. Proc. Am. Math. Soc. 12, 889–891 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  44. Odlyzko, A.M.: Explicit Tauberian estimates for functions with positive coefficients. J. Comput. Appl. Math. 41, 187–197 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Olum, K.D., Graham, N.: Static negative energies near a domain wall. Phys. Lett. B 554, 175–179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rédei, M., Summers, S.J.: When are quantum systems operationally independent? Internat. J. Theoret. Phys. 49, 3250–3261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Reeh, H., Schlieder, S.: Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Felden. Nuovo Cimento 10(22), 1051–1068 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sanders, K.: On the Reeh-Schlieder property in curved spacetime. Commun. Math. Phys. 288, 271–285 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Strohmaier, A.: The Reeh–Schlieder property for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. Summers, S.J.: Normal product states for fermions and twisted duality for CCR- and CAR-type algebras with application to the Yukawa\(_{2}\) quantum field model. Commun. Math. Phys. 86, 111–141 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  51. Summers, S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  52. Summers, S.J.: Subsystems and independence in relativistic microscopic physics. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 40, 133–141 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Verch, R.: Antilocality and a Reeh–Schlieder theorem on manifolds. Lett. Math. Phys. 28, 143–154 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  54. Verch, R.: Nuclearity, split property, and duality for the Klein-Gordon field in curved spacetime. Lett. Math. Phys. 29, 297–310 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Section 4 of this paper is based on [27] and a talk given at the annual meeting of the Deutschen Mathematiker-Vereinigung (DMV) in Hamburg, September 2015. I thank the organisers of the Mini-Symposium Algebraic Quantum Field Theory on Lorentzian Manifolds for the invitation to speak and to produce this paper. I am also grateful to Martin Porrmann for discussions on nuclearity indices in the early years of the present millennium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Fewster.

Additional information

Dedicated to the memory of Rudolf Haag.

Appendix: Proof of Theorem 3.2

Appendix: Proof of Theorem 3.2

Recall that \(m_0\ge 0\) has been fixed and that \(f\in C_0^\infty ({{\mathbb R}})\) is nonnegative, even, with unit integral, and has a Fourier transform that is real, even, nonnegative and bounded from below by

$$\begin{aligned} \hat{f}(u)\ge \varphi (|u|) \end{aligned}$$
(52)

on \([m_0,\infty )\), where \(\varphi :[m_0,\infty )\rightarrow {\mathbb R}^+\) is monotone decreasing. Note that nonnegativity of f and \(\hat{f}\) implies that \(\hat{f}(m_0)\le \hat{f}(0)=1\) and hence \(\varphi (u)\le 1\) for all \(u\ge m_0\).

Consider a single Klein–Gordon field of mass \(m\ge m_0\) on the symmetric Fock space \(\mathscr {F}\) over \(L^2({\mathbb R}^3,d^3{\varvec{k}}/(2\pi )^3)\), and define the usual annihilation operators \(a({\varvec{k}})\) by

$$\begin{aligned} (a({\varvec{k}})\Psi )^{(n)}({\varvec{k}}_1,\ldots ,{\varvec{k}}_n) = \sqrt{n+1}\Psi ^{(n+1)}({\varvec{k}},{\varvec{k}}_1,\ldots ,{\varvec{k}}_n), \end{aligned}$$
(53)

where for \(\Psi \in \mathscr {F}\), \(\Psi ^{(n)}\) denotes its n-particle component.Footnote 8 Writing \(a^\dagger ({\varvec{k}})\) for the adjoint of \(a({\varvec{k}})\) as a quadratic form, the canonical commutation relations are

(54)

and the quantum field is given by

$$\begin{aligned} \Phi (x) = \int \frac{d^3{\varvec{k}}}{(2\pi )^3\sqrt{2\omega }} \left( a({\varvec{k}})e^{-ik_a x^a} + a^\dagger ({\varvec{k}}) e^{ik_a x^a}\right) , \end{aligned}$$
(55)

in which \(k^a=(\omega ,{\varvec{k}})\) with \(\omega =(\Vert {\varvec{k}}\Vert ^2+m^2)^{1/2}\).

The energy density (with respect to the standard time coordinate) is a sum of Wick squares

$$\begin{aligned} \rho _m(x) = \frac{1}{2}\left( {:}(\nabla _0\Phi (x))^2{:} + \sum _{i=1}^3 {:}(\nabla _i\Phi (x))^2{:} + m^2{:}\Phi (x)^2{:}\right) , \end{aligned}$$
(56)

so, again in a quadratic form sense,

$$\begin{aligned} \rho _m(x)&= \int \frac{d^3{\varvec{k}}}{(2\pi )^3}\frac{d^3{\varvec{k}}'}{(2\pi )^3}\frac{1}{4\sqrt{\omega \omega '}} \left\{ (\omega \omega '+{\varvec{k}}\cdot {\varvec{k}}'+m^2)e^{i(k-k')\cdot x}a^\dagger ({\varvec{k}})a({\varvec{k}}') \right. \nonumber \\&\quad \left. - (\omega \omega '+{\varvec{k}}\cdot {\varvec{k}}'-m^2)e^{-i(k+k')\cdot x}a({\varvec{k}})a({\varvec{k}}')\right\} + \text {H.C.}, \end{aligned}$$
(57)

where \(\text {H.C.}\) denotes the hermitian conjugate.

Next, choose any smooth, symmetric, nonnegative function \(B:{\mathbb R}^3\times {\mathbb R}^3\rightarrow {\mathbb R}\), with compact support obeying

$$\begin{aligned} \text {supp}\,B\subset \{({\varvec{u}},{\varvec{u}}'): \Vert {\varvec{u}}\Vert ,\Vert {\varvec{u}}'\Vert \in [{\textstyle \frac{1}{2}},1];\quad |\theta ({\varvec{u}},{\varvec{u}}')|<\pi /3\}, \end{aligned}$$
(58)

where \(\theta ({\varvec{u}},{\varvec{u}}')\) is the angle between the vectors \({\varvec{u}}\), \({\varvec{u}}'\), and normalised so that

$$\begin{aligned} \int \frac{d^3{\varvec{u}}}{(2\pi )^3}\, \frac{d^3{\varvec{u}}'}{(2\pi )^3} B({\varvec{u}},{\varvec{u}}') =1\,. \end{aligned}$$
(59)

The function \(C:{\mathbb R}^3\times {\mathbb R}^3\rightarrow {\mathbb R}\)

$$\begin{aligned} C({\varvec{u}},{\varvec{u}}') = \int \frac{d^3{\varvec{u}}''}{(2\pi )^3} B({\varvec{u}}'',{\varvec{u}})B({\varvec{u}}'',{\varvec{u}}') \end{aligned}$$
(60)

is then pointwise nonnegative with support obeying

$$\begin{aligned} \text {supp}\,C\subset \{({\varvec{u}},{\varvec{u}}'): \Vert {\varvec{u}}\Vert ,\Vert {\varvec{u}}'\Vert \in [{\textstyle \frac{1}{2}},1] \}. \end{aligned}$$
(61)

We now define, for \(\lambda >0\), the vacuum-plus-two-particle superposition

$$\begin{aligned} \Psi _{m,\lambda } = \mathscr {N}_{m,\lambda }\left[ \Omega + \frac{\lambda }{\sqrt{2}}\int \frac{d^3{\varvec{k}}}{(2\pi )^3}\,\frac{d^3{\varvec{k}}'}{(2\pi )^3} b({\varvec{k}},{\varvec{k}}')a^\dagger ({\varvec{k}})a^\dagger ({\varvec{k}}')\Omega \right] , \end{aligned}$$
(62)

where \(\Omega \in \mathscr {F}\) is the Fock vacuum vector, \(\mathscr {N}_{m,\tau ,\lambda }\) is a normalisation constant and

$$\begin{aligned} b({\varvec{k}},{\varvec{k}}') = \frac{\varphi (2\sqrt{2} m)}{m^3}B({\varvec{k}}/m,{\varvec{k}}'/m). \end{aligned}$$
(63)

That is, \(\Psi _{m,\lambda }^{(0)}=\mathscr {N}_{m,\lambda }\), \(\Psi _{m,\lambda }^{(2)}({\varvec{k}},{\varvec{k}}') =\mathscr {N}_{m,\lambda } \lambda b({\varvec{k}},{\varvec{k}}')\) and all other components of \(\Psi _{m,\lambda }\) vanish. As b is compactly supported, each \(\Psi _{m,\lambda }\) is a Hadamard state. The normalisation constant is

$$\begin{aligned} \mathscr {N}_{m,\lambda } = \left( 1+\lambda ^2\varphi (2\sqrt{2} m)^2 \text {Tr}\,C\right) ^{-1/2} \ge \left( 1+\lambda ^2 \text {Tr}\,C\right) ^{-1/2}, \end{aligned}$$
(64)

where we have used \(\varphi \le 1\) and employed the short-hand notation

$$\begin{aligned} \text {Tr}\,C = \int \frac{d^3{\varvec{u}}}{(2\pi )^3} C({\varvec{u}},{\varvec{u}}). \end{aligned}$$
(65)

Using the general formulae \({\langle \Omega \mid a({\varvec{k}})a({\varvec{k}}')\Psi \rangle } = \sqrt{2}\Psi ^{(2)}({\varvec{k}},{\varvec{k}}')\) and

$$\begin{aligned} {\langle \Psi \mid a^\dagger ({\varvec{k}})a({\varvec{k}}')\Psi \rangle } = 2\int \frac{d^3{\varvec{k}}''}{(2\pi )^3} \overline{\Psi ^{(2)}({\varvec{k}}'',{\varvec{k}})}\Psi ^{(2)}({\varvec{k}}'',{\varvec{k}}'), \end{aligned}$$
(66)

for vacuum-plus-two-particle superpositions \(\Psi \), the expected normal ordered energy density is

$$\begin{aligned}&{\langle \Psi _{m,\lambda }\mid \rho _m(x) \Psi _{m,\lambda }\rangle } \nonumber \\&\quad = |\mathscr {N}_{m,\lambda }|^2\text {Re}\,\int \frac{d^3{\varvec{k}}}{(2\pi )^3}\,\frac{d^3{\varvec{k}}'}{(2\pi )^3} \frac{1}{\sqrt{\omega \omega '}}\left( \lambda ^2 c({\varvec{k}},{\varvec{k}}')(\omega \omega '+{\varvec{k}}\cdot {\varvec{k}}'+m^2)e^{i(k-k')\cdot x}\right. \nonumber \\&\qquad \left. -\frac{\lambda }{\sqrt{2}} b({\varvec{k}},{\varvec{k}}')(\omega \omega '+{\varvec{k}}\cdot {\varvec{k}}'-m^2)e^{-i(k+k')\cdot x} \right) , \end{aligned}$$
(67)

where

$$\begin{aligned} c({\varvec{k}},{\varvec{k}}') = \frac{\varphi (2\sqrt{2} m)^2 }{m^3}C({\varvec{k}}/m,{\varvec{k}}'/m). \end{aligned}$$
(68)

As \(\Psi _{m,\lambda }\) is Hadamard, the expectation value is smooth in x and we can therefore average against f(t), using the fact that \(\hat{f}\) is real, to find

$$\begin{aligned} \int {\langle \Psi _{m,\lambda }\mid \rho _m(t,{\varvec{0}}) \Psi _{m,\lambda }\rangle }f(t)\,dt&= |\mathscr {N}_{m,\lambda }|^2\int \frac{d^3{\varvec{k}}}{(2\pi )^3}\,\frac{d^3{\varvec{k}}'}{(2\pi )^3} \frac{1}{\sqrt{\omega \omega '}}\nonumber \\&\quad \times \left( \lambda ^2 c({\varvec{k}},{\varvec{k}}')(\omega \omega '+{\varvec{k}}\cdot {\varvec{k}}'+m^2) \hat{f}(\omega '-\omega )\right. \nonumber \\&\quad \left. -\frac{\lambda }{\sqrt{2}} b({\varvec{k}},{\varvec{k}}')(\omega \omega '+{\varvec{k}}\cdot {\varvec{k}}'-m^2)\hat{f}(\omega +\omega ') \right) . \end{aligned}$$
(69)

We now seek an upper bound on this last quantity. First note that, for \(({\varvec{k}},{\varvec{k}}')\in \text {supp}\,c\), we have \(\omega ,\omega '\in [\sqrt{5}m/2,\sqrt{2}m]\) and

$$\begin{aligned} \frac{1}{\sqrt{\omega \omega '}}\left( \omega \omega '+{\varvec{k}}\cdot {\varvec{k}}'+m^2\right) \le \frac{4m^2}{\sqrt{5}m/2}= \frac{8m}{\sqrt{5}}, \end{aligned}$$
(70)

while if \(({\varvec{k}},{\varvec{k}}')\in \text {supp}\,b\) we have

$$\begin{aligned} \frac{1}{\sqrt{\omega \omega '}}\left( \omega \omega '+{\varvec{k}}\cdot {\varvec{k}}'-m^2\right) \ge \frac{1}{m\sqrt{2}} \left( \frac{m^2}{4}+{\varvec{k}}\cdot {\varvec{k}}' \right) \ge \frac{3m}{8\sqrt{2}}. \end{aligned}$$
(71)

Second, because f and \(\hat{f}\) are positive, \( \hat{f}(\omega '-\omega )\le \hat{f}(0)=1\); furthermore, for \(({\varvec{k}},{\varvec{k}}')\in \text {supp}\,b\) (and so, in particular, \(m_0<\sqrt{5}m_0\le \omega +\omega '\le 2\sqrt{2}m_0\)) we have

$$\begin{aligned} \hat{f}(\omega +\omega ')\ge \varphi (\omega +\omega ')\ge \varphi (2\sqrt{2} m). \end{aligned}$$
(72)

Accordingly, as \(\lambda \) and the functions b and c are positive, we obtain the bound

$$\begin{aligned} \text {L.H.S. of~(69)} \le |\mathscr {N}_{m,\lambda }|^2\int \frac{d^3{\varvec{k}}}{(2\pi )^3}\,\frac{d^3{\varvec{k}}'}{(2\pi )^3} \left( \lambda ^2 c({\varvec{k}},{\varvec{k}}')\frac{8m}{\sqrt{5}} -\lambda b({\varvec{k}},{\varvec{k}}')\frac{3m}{16}\varphi (2\sqrt{2} m) \right) ,\nonumber \\ \end{aligned}$$
(73)

the right-hand side of which can be written as \(-|\mathscr {N}_{m,\lambda }|^2 P(\lambda ) m^4 \varphi (2\sqrt{2} m)^2\), where

$$\begin{aligned} P(\lambda ) = \frac{3}{16} \lambda -\lambda ^2 \frac{8}{\sqrt{5}} \int \frac{d^3{\varvec{u}}}{(2\pi )^3}\,\frac{d^3{\varvec{u}}'}{(2\pi )^3} C({\varvec{u}},{\varvec{u}}'), \end{aligned}$$
(74)

as follows on inserting the definitions (63), (68) of \(b({\varvec{k}},{\varvec{k}}')\) and \(c({\varvec{k}},{\varvec{k}}')\) and using the normalisation (59) of B. Now the quadratic \(P(\lambda )\) has a positive maximum at some \(\lambda _0>0\) (note that P and \(\lambda _0\) are independent of m). Defining \(\Psi _{m}=\Psi _{m,\lambda _0}\), we therefore obtain

$$\begin{aligned} \int {\langle \Psi _{m}\mid \rho _m(t,{\varvec{0}}) \Psi _{m}\rangle }f(t)\,dt \le -\Gamma m^4 \varphi (2\sqrt{2} m)^2, \end{aligned}$$
(75)

where

$$\begin{aligned} \Gamma = \frac{P(\lambda _0)}{1+\lambda _0^2 \text {Tr}\,C} \end{aligned}$$
(76)

depends only on the function B (and not on m or \(\varphi \)). This completes the proof of Theorem 3.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fewster, C.J. The split property for quantum field theories in flat and curved spacetimes. Abh. Math. Semin. Univ. Hambg. 86, 153–175 (2016). https://doi.org/10.1007/s12188-016-0130-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-016-0130-9

Keywords

Mathematics Subject Classification

Navigation