Skip to main content

Advertisement

Log in

Stability of Quantum Systems at Three Scales: Passivity, Quantum Weak Energy Inequalities and the Microlocal Spectrum Condition

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Quantum weak energy inequalities have recently been extensively discussed as a condition on the dynamical stability of quantum field states, particularly on curved spacetimes. We formulate the notion of a quantum weak energy inequality for general dynamical systems on static background spacetimes and establish a connection between quantum weak energy inequalities and thermodynamics. Namely, for such a dynamical system, we show that the existence of a class of states satisfying a quantum weak inequality implies that passive states (e.g., mixtures of ground- and thermal equilibrium states) exist for the time-evolution of the system and, therefore, that the second law of thermodynamics holds. As a model system, we consider the free scalar quantum field on a static spacetime. Although the Weyl algebra does not satisfy our general assumptions, our abstract results do apply to a related algebra which we construct, following a general method which we carefully describe, in Hilbert-space representations induced by quasifree Hadamard states. We discuss the problem of reconstructing states on the Weyl algebra from states on the new algebra and give conditions under which this may be accomplished. Previous results for linear quantum fields show that, on one hand, quantum weak energy inequalities follow from the Hadamard condition (or microlocal spectrum condition) imposed on the states, and on the other hand, that the existence of passive states implies that there is a class of states fulfilling the microlocal spectrum condition. Thus, the results of this paper indicate that these three conditions of dynamical stability are essentially equivalent. This observation is significant because the three conditions become effective at different length scales: The microlocal spectrum condition constrains the short-distance behaviour of quantum states (microscopic stability), quantum weak energy inequalities impose conditions at finite distance (mesoscopic stability), and the existence of passive states is a statement on the global thermodynamic stability of the system (macroscopic stability).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bros, J., Buchholz, D.: Towards a relativistic KMS-condition. Nucl. Phys. B 429, 291 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and Wick polynomials in curved spacetime. Commun. Math. Phys. 180, 633 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Buchholz, D., Wichmann, E.H.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106, 321 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Buchholz, D., Porrmann, M.: How small is the phase space in quantum field theory? Ann. Inst. H. Poincaré 52, 237 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, Vol. 1, 2n d edn. Berlin-Heidelberg-New York: Springer-Verlag, 1987

  7. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, Vol. 2, 2n d edn. Berlin-Heidelberg-New York: Springer-Verlag, 1997

  8. D'Antoni, C., Hollands, S.: Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved spacetime. arXiv:math-ph/0106028

  9. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219 (1980)

    MathSciNet  MATH  Google Scholar 

  10. Epstein, H., Glaser, V., Jaffe, A.: Nonpositivity of the energy density in quantized field theories. Nuovo Cimento 36, 1016 (1965)

    Google Scholar 

  11. Fewster, C.J., Eveson, S.P.: Bounds on negative energy densities in flat spacetime. Phys. Rev. D 58, 084010 (1998)

    Article  Google Scholar 

  12. Fewster, C.J.: A general worldline quantum inequality. Class. Quantum Grav. 17, 1897 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fewster, C.J., Teo, E.: Bounds on negative energy densities in static spacetimes. Phys. Rev. D 59, 104016 (1999)

    Article  Google Scholar 

  14. Fewster, C.J., Teo, E.: Quantum inequalities and quantum interest as eigenvalue problems. Phys. Rev. D 61, 084012 (2000)

    Article  Google Scholar 

  15. Fewster, C.J., Verch, R.: A quantum weak energy inequality for Dirac fields in curved spacetime. Commun. Math. Phys. 225, 331 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flanagan, É.É.: Quantum inequalities in two-dimensional Minkowski spacetime. Phys. Rev. D 56, 4922 (1997)

    Article  MathSciNet  Google Scholar 

  17. Ford, L.H.: Quantum coherence effects and the second law of thermodyamics. Proc. Roy. Soc. Lond. A 364, 227 (1978)

    Google Scholar 

  18. Ford, L.H., Roman, T.A.: Averaged energy conditions and quantum inequalities. Phys. Rev. D 51, 4277 (1995)

    Article  MathSciNet  Google Scholar 

  19. Ford, L.H., Roman, T.A.: Restrictions on negative energy density in flat spacetime. Phys. Rev. D 55, 2082 (1997)

    Article  MathSciNet  Google Scholar 

  20. Ford, L.H., Roman, T.A.: Quantum field theory constrains traversable wormhole geometries. Phys. Rev. D 53, 5496 (1996)

    Article  MathSciNet  Google Scholar 

  21. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime, II. Ann. Phys. (N.Y.) 136, 243 (1981)

    MATH  Google Scholar 

  22. Guido, D., Longo, R.: Natural energy bounds in quantum thermodynamics. Commun. Math. Phys. 218, 513 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haag, R.: Local quantum physics. 2n d Edn., Berlin: Springer Verlag, 1996

  24. Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Commun. Math. Phys. 1, 308 (1965)

    MATH  Google Scholar 

  25. Hörmander, L.: The analysis of linear partial differential operators I. Berlin: Springer Verlag, 1983

  26. Hörmander, L.: Fourier integral operators. I. Acta Math. 127, 79 (1971)

    Google Scholar 

  27. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing Horizon. Phys. Rep. 207, 49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuckert, B.: Covariant thermodynamics of quantum systems: Passivity, semipassivity, and the Unruh effect. Ann. Phys. (N.Y.) 295, 216 (2002)

    Article  MATH  Google Scholar 

  29. Kuckert, B.: β-boundedness, semipassivity, and the KMS-condition. Commun. Math. Phys. 229, 369 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pfenning, M.J.: Quantum inequalities for the electromagnetic field. Phys. Rev. D 65, 024009 (2002)

    Article  Google Scholar 

  31. Pfenning, M.J., Ford, L.H.: The unphysical nature of `warp drive'. Class. Quantum Grav. 14, 1743 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pfenning, M.J., Ford, L.H.: Scalar field quantum inequalities in static spacetimes. Phys. Rev. D 57, 3489 (1998)

    Article  MathSciNet  Google Scholar 

  33. Pusz, W., Woronowicz, S.L.: Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273 (1978)

    Google Scholar 

  34. Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory in curved spacetime. Commun. Math. Phys. 179, 529 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. 1. San Diego: Academic Press, 1975

  36. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. 2. San Diego: Academic Press, 1975

  37. Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13, 1203 (2001)

    Article  MathSciNet  Google Scholar 

  39. Steater, R.F., Wightman, A.S.: PCT, spin and statistics, and all that. New York: Benjamin, 1964

  40. Strohmaier, A., Verch, R., Wollenberg, M.: Microlocal analysis of quantum fields on curved spacetimes: Analytic wavefront sets and Reeh-Schlieder theorems. J. Math. Phys. 43, 5514 (2002)

    Article  Google Scholar 

  41. Summers, S.J.: Normal product states for fermions and twisted duality for CCR- and CAR-type algebras with applications to the Yukawa2 quantum field model. Commun. Math. Phys. 86, 111 (1982)

    MathSciNet  MATH  Google Scholar 

  42. Summers, S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Verch, R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved spacetime. Commun. Math. Phys. 160, 507 (1994)

    MathSciNet  MATH  Google Scholar 

  44. Verch, R.: Nuclearity, split property, and duality for the Klein-Gordon field in curved spacetime. Lett. Math. Phys. 29, 297 (1993)

    MathSciNet  MATH  Google Scholar 

  45. Verch, R.: Wavefront sets in algebraic quantum field theory. Commum. Math. Phys. 205, 337 (1999)

    Article  MATH  Google Scholar 

  46. Visser, M., Barcelo, C.: Energy conditions and their cosmological implications. arXiv:gr-qc/0001099

  47. Vollick, D.N.: Quantum inequalities in curved two dimensional spacetime. Phys. Rev. D 61, 084022 (2000)

    Article  Google Scholar 

  48. Wald, R.M.: Quantum field theory in curved spacetime and black hole thermodynamics. Chicago: University of Chicago Press, 1994

  49. Weinless, M.: Existence and uniqueness of the vacuum for linear quantized fields. J. Funct. Anal. 4, 350 (1969)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Fewster.

Additional information

Communicated by J.L. Lebowitz

Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany. verch@mis.mpg.de

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fewster, C., Verch, R. Stability of Quantum Systems at Three Scales: Passivity, Quantum Weak Energy Inequalities and the Microlocal Spectrum Condition. Commun. Math. Phys. 240, 329–375 (2003). https://doi.org/10.1007/s00220-003-0884-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0884-7

Keywords

Navigation