Skip to main content
Log in

Nuclearity, Local Quasiequivalence and Split Property for Dirac Quantum Fields in Curved Spacetime

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that a free Dirac quantum field on a globally hyperbolic spacetime has the following structural properties: (a) any two quasifree Hadamard states on the algebra of free Dirac fields are locally quasiequivalent; (b) the split-property holds in the representation of any quasifree Hadamard state; (c) if the underlying spacetime is static, then the nuclearity condition is satisfied, that is, the free energy associated with a finitely extended subsystem (``box'') has a linear dependence on the volume of the box and goes like ∝T s +1 for large temperatures T, where s+1 is the number of dimensions of the spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H.: On quasifree states of the CAR and Bogoliubov automorphisms. Publ. RIMS Kyoto Univ. 6, 385–442 (1970)

    Article  MathSciNet  Google Scholar 

  2. Buchholz, D., D'Antoni, C., Fredenhagen, K.: The universal structure of local algebras. Commun. Math. Phys. 111, 123 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Buchholz, D., D'Antoni, C., Longo, R.: Nuclear Maps and Modular Structures II: Applications to Quantum Field Theory. Commun. Math. Phys 129, 115–138 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Buchholz, D., Wichmann, E.H.: Causal independence and the energy-level density of states in quantum field theory. Commun. Math. Phys. 106, 321–344 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Buchholz, D., Porrmann, M.: How small is the phase space in quantum field theory? Ann. Inst. H. Poincare 52, 237 (1991)

    MathSciNet  Google Scholar 

  6. Dimock, J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269, 133–147 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Foit, J.J.: Abstract Twisted Duality for Quantum Free Fermi Field. Publ. R.I.M.S. Kyoto Univ. 19, 729–741 (1983)

    MATH  MathSciNet  Google Scholar 

  8. Fulling, S.A., Narcowich, F.J. Wald, R.M.: Singularity Structure Of The Two Point Function In Quantum Field Theory In Curved Space-Time. II. Annals Phys. 136, 243 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  9. Gilkey, P.B.: The Index Theorem and the Heat Equation. Publish or Perish, Boston 1974

  10. Haag, R.: Local Quantum Physics. Berlin: Springer Verlag, 1990

  11. Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Commun. Math. Phys. 5, 215 (1967)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Hörmander, L.: The analysis of linear partial differential operators, III. Berlin: Springer-Verlag, 1985

  13. Hollands, S.: The Hadamard Condition for Dirac fields and Adiabatic States on Robertson-Walker Spacetimes. Commun. Math. Phys. 216, 635 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Hollands, S., Ruan, W.: The state space of perturbative quantum field theory in curved space-times. Ann. Henri Poincaré 3, 635 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Junker, W.: Hadamard States, Adiabatic Vacua and the Construction of Physical States for Scalar Quantum Fields on Curved Spacetime. Rev. Math. Phys. 8, 1091–1159 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Junker, W., Schroe, E.: Adiabatic vacuum states on general spacetime manifolds: Definition, construction and physical properties. Ann. Poincaré Phys. Theor. 3, 1113 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Kay, B.S., Wald, R.M.: Theorems On The Uniqueness And Thermal Properties Of Stationary, Nonsingular, Quasifree States On Space-Times With A Bifurcate Killing Horizon. Phys. Rept. 207, 49 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Kratzert, K.: Singularity structure of the two point function of the free Dirac field on a globally hyperbolic spacetime. Ann. Phys. 9, 475 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pietsch, A.: Nuclear locally convex spaces. Berlin: Springer-Verlag, 1972

  20. Powers, R.T., Størmer, E.: Free states of the canonical anticommutation relations. Commun. Math. Phys. 16, 1 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Radzikowski, M.J.: Micro-Local Approach To The Hadamard Condition In Quantum Field Theory On Curved Space-Time. Commun. Math. Phys. 179, 529 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Reed, M., Simon, B.: Methods of modern mathematical physics, IV. London: Academic Press, 1978

  23. Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13, 1203 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Strohmaier, A.: The Reeh-Schlieder property for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Summers, S.: Normal product states for fermions and twisted duality for CCR and CAR-type algebras with application to the Yukawa2 quantum field model. Commun. Math. Phys. 86, 111–141 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Verch, R.: Nuclearity, split-property and duality for the Klein-Gordon field in curved space-time. Lett. Math. Phys. 29, 297 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Verch, R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved space-time. Commun. Math. Phys. 160, 507 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Verch, R.: A Spin-Statistics Theorem for Quantum Fields on Curved Spacetime Manifolds in a Generally Covariant Framework. Commun. Math. Phys. 223, 261 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Verch, R.: Scaling Analysis and Ultraviolet Behavior of Quantum Field Theories in Curved Spacetime. Hamburg University (1994) (PhD thesis)

  31. Hollands, S., Wald, R.M.: Local Wick Polynomials and Local Time Ordered Products of Quantum Fields in Curved Spacetime. Commun. Math. Phys. 223, 289 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Wald, R.M.: General Relativity. Chicago: The University of Chicago Press, 1984

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Antoni, C., Hollands, S. Nuclearity, Local Quasiequivalence and Split Property for Dirac Quantum Fields in Curved Spacetime. Commun. Math. Phys. 261, 133–159 (2006). https://doi.org/10.1007/s00220-005-1398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1398-2

Keywords

Navigation