Skip to main content
Log in

Superposition, Transition Probabilities and Primitive Observables in Infinite Quantum Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The concepts of superposition and of transition probability, familiar from pure states in quantum physics, are extended to locally normal states on funnels of type I factors. Such funnels are used in the description of infinite systems, appearing for example in quantum field theory or in quantum statistical mechanics; their respective constituents are interpreted as algebras of observables localized in an increasing family of nested spacetime regions. Given a generic reference state (expectation functional) on a funnel, e.g. a ground state or a thermal equilibrium state, it is shown that irrespective of the global type of this state all of its excitations, generated by the adjoint action of elements of the funnel, can coherently be superimposed in a meaningful manner. Moreover, these states are the extreme points of their convex hull and as such are analogues of pure states. As further support of this analogy, transition probabilities are defined, complete families of orthogonal states are exhibited and a one-to-one correspondence between the states and families of minimal projections on a Hilbert space is established. The physical interpretation of these quantities relies on a concept of primitive observables. It extends the familiar framework of observable algebras and avoids some counter intuitive features of that setting. Primitive observables admit a consistent statistical interpretation of corresponding measurements and their impact on states is described by a variant of the von Neumann–Lüders projection postulate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borchers H.-J.: On the vacuum state in quantum field theory II. Commun. Math. Phys. 1, 57–79 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States. Models in Quantum Statistical Mechanics. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  3. Buchholz D., D’Antoni C., Fredenhagen K.: The universal structure of local algebras. Commun. Math. Phys. 111, 123–135 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Buchholz D., Doplicher S., Longo R.: On Noether’s theorem in quantum field theory. Ann. Phys. 170, 1–17 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Buchholz D., Roberts J.E.: New light on infrared problems: sectors, statistics, symmetries and spectrum. Commun. Math. Phys. 330, 935–972 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  6. Buchholz D., Wichmann E.H.: Causal independence and the energy level density of states in local quantum field theory. Commun. Math. Phys. 106, 321–344 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  7. Buchholz D., Yngvason J.: There are no causality problems for Fermi’s two-atom system. Phys. Rev. Lett. 73, 613–616 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Connes, A., Haagerup, U., Størmer, E.: Diameters of state spaces of type III factors. In: Lecture Notes in Mathematics, vol. 1132, pp. 91–116. Springer, Berlin (1985)

  9. Connes A., Størmer E.: Homogeneity of the state space of factors of type III1. J. Funct. Anal. 28, 187–196 (1987)

    Article  Google Scholar 

  10. D’Antoni C., Longo R., Radulescu F.: Conformal nets, maximal temperature and models from free probability. J. Oper. Theory 45, 195–208 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Dixmier J., Maréchal O.: Vecteurs totalisateurs d’une algebre de von Neumann. Commun. Math. Phys. 22, 44–50 (1971)

    Article  ADS  Google Scholar 

  12. Doplicher S., Longo R.: Local aspects of superselection rules II. Commun. Math. Phys. 88, 399–409 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Driessler W.: Duality and absence of locally generated superselection sectors for CCR type algebras. Commun. Math. Phys. 70, 213–220 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Fewster, C.J.: The split property for locally covariant quantum field theories in curved spacetime. arXiv:1501.02682

  16. Fröhlich J.: Quantum theory of nonlinear invariant wave (field) equations or superselection sectors in constructive quantum field theory. Lect. Notes Phys. 73, 339–413 (1978)

    Article  ADS  Google Scholar 

  17. Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1996)

    Book  Google Scholar 

  18. Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Haag R., Kadison R., Kastler D.: Nets of C*-algebras and classification of states. Commun. Math. Phys. 16, 81–104 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Halvorson H.: Reeh–Schlieder defeats Newton–Wigner: on alternative localization schemes in relativistic quantum field theory. Philos. Sci. 68, 111–133 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hellwig K.E., Kraus K.: Pure operations and measurements. Commun. Math. Phys. 11, 214–220 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Jäkel C.: The Reeh–Schlieder property for thermal field theories. J. Math. Phys. 41, 1745–1754 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Jozsa R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Kadison R.: Irreducible operator algebras. Proc. Nat. Acad. Sci. USA 43, 273–276 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. Longo R.: Notes on algebraic invariants for non-commutative dynamical systems. Commun. Math. Phys. 69, 195–207 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  27. Roberts J.E., Roepstorff G.: Some basic concepts of algebraic quantum theory. Commun. Math. Phys. 11, 321–338 (1968)

    Article  MathSciNet  ADS  Google Scholar 

  28. Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved space-times: analytic wave front sets and Reeh–Schlieder theorems. J. Math. Phys. 43, 5514–5530 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Summers S.J.: Normal product states for fermions and twisted duality for CCR-and CAR-type algebras with application to the Yukawa2 quantum field model. Commun. Math. Phys. 86, 111–141 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Takesaki M.: Algebraic equivalence of locally normal representations. Pac. J. Math. 34, 807–816 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  31. Uhlmann A.: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Verch R.: Nuclearity, split property, and duality for the Klein–Gordon field in curved space-time. Lett. Math. Phys. 29, 297–310 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Yngvason J.: The role of type III factors in quantum field theory. Rep. Math. Phys. 11, 135–147 (2004)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlev Buchholz.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchholz, D., Størmer, E. Superposition, Transition Probabilities and Primitive Observables in Infinite Quantum Systems. Commun. Math. Phys. 339, 309–325 (2015). https://doi.org/10.1007/s00220-015-2405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2405-x

Keywords

Navigation