Skip to main content
Log in

Growth and Metabolite Production in Chlorella sp.: Analysis of Cultivation System and Nutrient Reduction

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgae are a sustainable source for many bioproduct syntheses. This study shows how different cultivation systems and nutrient concentrations affect Chlorella sp. development. The cultivation was performed in open and closed lab-scale systems. A Tukey test was used to evaluate the significant differences between the microalgae growth and composition under the two systems analyzed. The effect of nitrogen and phosphorus concentration was analyzed with a 22 full factorial design. Lipids, carbohydrates, proteins, and pigments were extracted and quantified. The highest specific growth rate (0.52 1/day) was obtained in the open pond, with a cell density of 5.06 × 107 cells/mL and a biomass concentration of 1.30 mg/mL. In this condition, the higher concentration of pigments was obtained: 13 μg/mg of chlorophyll-a, 15 μg/mg of chlorophyll-b, and 2 μg/mg of carotenoids. An expressive increase in the lipid (from 17 to 35%) was obtained in low nitrogen and high phosphorus. Protein percentage increases with both nutrients at a higher level, reaching up to 60%. The percentage of carbohydrates decreases from 32 to 13% with phosphorus reduction. Thus, this study points out the conditions that benefit the accumulation of each Chlorella sp. metabolite, contributing to the decision-making for the cultivation and applications of this microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Rios Pinto LF, Ferreira GF, Tasic M (2021) Cultivation techniques. In: Osborn P (ed) Microalgae: cultivation, recovery of compounds and applications, 1st edn. Academic Press, pp 1–34

    Google Scholar 

  2. Estevam BR, Ríos Pinto LF, Filho RM, Fregolente LV (2022) Potential applications of Botryococcus terribilis: a review. Biomass Bioenerg 165:106582. https://doi.org/10.1016/J.BIOMBIOE.2022.106582

    Article  CAS  Google Scholar 

  3. Collotta M, Champagne P, Mabee W, Tomasoni G (2018) Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Res 29:12–21. https://doi.org/10.1016/j.algal.2017.11.013

    Article  Google Scholar 

  4. Mishra S, Mohanty K (2019) Comprehensive characterization of microalgal isolates and lipid-extracted biomass as zero-waste bioenergy feedstock: an integrated bioremediation and biorefinery approach. Bioresour Technol 273:177–184. https://doi.org/10.1016/j.biortech.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  5. Khoo CG, Dasan YK, Lam MK, Lee KT (2019) Algae biorefinery: review on a broad spectrum of downstream processes and products. Bioresour Technol 292:.https://doi.org/10.1016/j.biortech.2019.121964

  6. Luo L, He H, Yang C, Wen S, Zeng G, Wu M, Zhou Z, Lou W (2016) Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater. Bioresour Technol 216:135–141. https://doi.org/10.1016/j.biortech.2016.05.059

    Article  CAS  PubMed  Google Scholar 

  7. Nordin N, Yusof N, Samsudin S (2017) Biomass production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in nitrified landfill leachate. Waste Biomass Valorization 8:2301–2311. https://doi.org/10.1007/s12649-016-9709-8

    Article  CAS  Google Scholar 

  8. Ferreira GF, Ríos Pinto LF, Carvalho PO, Coelho MB, Eberlin MN, Maciel Filho R, Fregolente LV (2019) Biomass and lipid characterization of microalgae genera Botryococcus, Chlorella, and Desmodesmus aiming high-value fatty acid production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00566-3

    Article  Google Scholar 

  9. Ferreira GF, Ríos Pinto LF, Maciel Filho R, Fregolente LV (2019) A review on lipid production from microalgae: association between cultivation using waste streams and fatty acid profiles. Renew Sustain Energy Rev 109:448–466. https://doi.org/10.1016/j.rser.2019.04.052

    Article  CAS  Google Scholar 

  10. Deshmukh S, Kumar R, Bala K (2019) Microalgae biodiesel: a review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process Technol 191:232–247. https://doi.org/10.1016/j.fuproc.2019.03.013

    Article  CAS  Google Scholar 

  11. Galarza VO (2019) Carbohydrates and proteins in microalgaes: potential functional foods. Brazilian J Food Technol 22:2019043. https://doi.org/10.1590/1981-6723.04319

    Article  CAS  Google Scholar 

  12. García-Cubero R, Cabanelas ITD, Sijtsma L, Kleinegris DMM, Barbosa MJ (2018) Production of exopolysaccharide by Botryococcus braunii CCALA 778 under laboratory simulated Mediterranean climate conditions. Algal Res 29:330–336. https://doi.org/10.1016/j.algal.2017.12.003

    Article  Google Scholar 

  13. Goh BHH, Ong HC, Cheah MY, Chen WH, Yu KL, Mahlia TMI (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sustain Energy Rev 107:59–74. https://doi.org/10.1016/j.rser.2019.02.012

    Article  CAS  Google Scholar 

  14. Rajesh Banu J, Preethi KS, Gunasekaran M, Kumar G (2020) Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol 302:122822

    Article  CAS  PubMed  Google Scholar 

  15. de Jesus SS, Ferreira GF, Wolf Maciel MR, Maciel Filho R (2019) Biodiesel purification by column chromatography and liquid-liquid extraction using green solvents. Fuel 235:1123–1130. https://doi.org/10.1016/j.fuel.2018.08.107

    Article  CAS  Google Scholar 

  16. Li J, Pan K, Tang X, Li Y, Zhu B, Zhao Y (2021) The molecular mechanisms of Chlorella sp. responding to high CO2: a study based on comparative transcriptome analysis between strains with high- and low-CO2 tolerance. Sci Total Environ 763:144185 . https://doi.org/10.1016/J.SCITOTENV.2020.144185

  17. Colling Klein B, Bonomi A, Maciel Filho R (2018) Integration of microalgae production with industrial biofuel facilities: a critical review. Renew Sustain Energy Rev 82:1376–1392

    Article  Google Scholar 

  18. Liu Y, Lyu Y, Tian J, Zhao J, Ye N, Zhang Y, Chen L (2021) Review of waste biorefinery development towards a circular economy: from the perspective of a life cycle assessment. Renew Sustain Energy Rev 139:110716. https://doi.org/10.1016/j.rser.2021.110716

    Article  CAS  Google Scholar 

  19. Aziz MMA, Kassim KA, Shokravi Z, Jakarni FM, Lieu HY, Zaini N, Tan LS, Islam S, Shokravi H (2020) Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: a review. Renew Sustain Energy Rev 119:109621

    Article  CAS  Google Scholar 

  20. Lam GP, Vermuë MH, Eppink MHM, Wijffels RH, van den Berg C (2018) Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol 36:216–227

    Article  PubMed  Google Scholar 

  21. Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, Schenk PM (2016) Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front Energy Res 4:29. https://doi.org/10.3389/fenrg.2016.00029

    Article  Google Scholar 

  22. Zhu LD, Li ZH, Hiltunen E (2016) Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Biomed Res Int 2016:7–9. https://doi.org/10.1155/2016/8792548

    Article  CAS  Google Scholar 

  23. Chen B, Wan C, Mehmood MA, Chang J, Bai F, Zhao X (2017) Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products-a review State Key Laboratory of Microbial Metabolism and School of Life Science and School of Life Science and Biotechnology. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.05.170

    Article  PubMed  Google Scholar 

  24. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205. https://doi.org/10.1128/mmbr.35.2.171-205.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nayak M, Suh WI, Cho JM, Kim HS, Lee B, Chang YK (2020) Strategic implementation of phosphorus repletion strategy in continuous two-stage cultivation of Chlorella sp. HS2: evaluation for biofuel applications. J Environ Manage 271:111041 . https://doi.org/10.1016/j.jenvman.2020.111041

  26. Ultimaker (2017) Technical data sheet ABS. Eletronic publication

  27. Novais MT, da Silva V, Ramos B de P, Ferreira GF, Jardini AL, Rios Pinto LF, Fregolente L V. (2021) Estudo do cultivo de microalgas em sistema aberto construído por manufatura aditiva. XXIX Congresso de iniciação científica da UNICAMP. p. 1–5

  28. Kuo C-M, Jian J-F, Sun Y-L, Lin T-H, Yang Y-C, Zhang W-X, Chang H-F, Lai J-T, Chang J-S, Lin C-S (2018) An efficient photobioreactors/raceway circulating system combined with alkaline-CO2 capturing medium for microalgal cultivation. Bioresour Technol 266:398–406. https://doi.org/10.1016/j.biortech.2018.06.090

    Article  CAS  PubMed  Google Scholar 

  29. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  30. Hartman L, Lago RC (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pr 22:475–476

    CAS  Google Scholar 

  31. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  33. Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41. https://doi.org/10.1007/s11120-006-9065-9

    Article  CAS  PubMed  Google Scholar 

  34. Lu Q, Zhou W, Min M, Ma X, Chandra C, Doan YTT, Ma Y, Zheng H, Cheng S, Griffith R, Chen P, Chen C, Urriola PE, Shurson GC, Gislerød HR, Ruan R (2015) Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresour Technol 198:189–197. https://doi.org/10.1016/j.biortech.2015.08.133

    Article  CAS  PubMed  Google Scholar 

  35. Zhu S, Wang Y, Xu J, Shang C, Wang Z, Xu J, Yuan Z (2015) Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion. Bioresour Technol 198:165–171. https://doi.org/10.1016/j.biortech.2015.08.142

    Article  CAS  PubMed  Google Scholar 

  36. Arora N, Patel A, Pruthi PA, Pruthi V (2016) Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresour Technol 213:79–87. https://doi.org/10.1016/j.biortech.2016.02.112

    Article  CAS  PubMed  Google Scholar 

  37. Mehrabadi A, Farid MM, Craggs R (2017) Potential of five different isolated colonial algal species for wastewater treatment and biomass energy production. Algal Res 21:1–8. https://doi.org/10.1016/j.algal.2016.11.002

    Article  Google Scholar 

  38. Gopalakrishnan S, Baker J, Kristoffersen L, Betenbaugh MJ (2015) Redistribution of metabolic fluxes in Chlorella protothecoides by variation of media nitrogen concentration. Metab Eng Commun 2:124–131. https://doi.org/10.1016/j.meteno.2015.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hussain J, Wang X, Sousa L, Ali R, Rittmann BE, Liao W (2020) Using non-metric multi-dimensional scaling analysis and multi-objective optimization to evaluate green algae for production of proteins, carbohydrates, lipids, and simultaneously fix carbon dioxide. Biomass Bioenerg 141:105711. https://doi.org/10.1016/j.biombioe.2020.105711

    Article  CAS  Google Scholar 

  40. Danesh AF, Ebrahimi S, Salehi A, Parsa A (2017) Impact of nutrient starvation on intracellular biochemicals and calorific value of mixed microalgae. Biochem Eng J 125:56–64. https://doi.org/10.1016/j.bej.2017.05.017

    Article  CAS  Google Scholar 

  41. Mandotra SK, Kumar P, Suseela MR, Nayaka S, Ramteke PW (2016) Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresour Technol 201:222–229. https://doi.org/10.1016/j.biortech.2015.11.042

    Article  CAS  PubMed  Google Scholar 

  42. Malibari R, Sayegh F, Elazzazy AM, Baeshen MN, Dourou M, Aggelis G (2018) Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from Red Sea – Jeddah. J Clean Prod 198:160–169. https://doi.org/10.1016/J.JCLEPRO.2018.07.037

    Article  CAS  Google Scholar 

  43. Mathimani T, Sekar M, Shanmugam S, Sabir JSM, Chi NTL, Pugazhendhi A (2021) Relative abundance of lipid types among Chlorella sp. and Scenedesmus sp. and ameliorating homogeneous acid catalytic conditions using central composite design (CCD) for maximizing fatty acid methyl ester yield. Sci Total Environ 771:144700 . https://doi.org/10.1016/j.scitotenv.2020.144700

  44. Andruleviciute V, Makareviciene V, Skorupskaite V, Gumbyte M (2014) Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycero. J Appl Phycol 26:83–90. https://doi.org/10.1007/s10811-013-0048-x

    Article  CAS  Google Scholar 

  45. Nascimento IA, Cabanelas ITD, dos Santos JN, Nascimento MA, Sousa L, Sansone G (2015) Biodiesel yields and fuel quality as criteria for algal-feedstock selection: effects of CO2-supplementation and nutrient levels in cultures. Algal Res 8:53–60. https://doi.org/10.1016/j.algal.2015.01.001

    Article  Google Scholar 

  46. Cabanelas ITD, Marques SSI, de Souza CO, Druzian JI, Nascimento IA (2015) Botryococcus, what to do with it? Effect of nutrient concentration on biorefinery potential. Algal Res 11:43–49. https://doi.org/10.1016/j.algal.2015.05.009

    Article  Google Scholar 

  47. Han S-F, Jin W, Tu R, Abomohra AE-F, Wang Z-H (2016) Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater. Bioprocess Biosyst Eng 39:1073–1079. https://doi.org/10.1007/s00449-016-1585-x

    Article  CAS  PubMed  Google Scholar 

  48. Ashokkumar V, Chen W-H, Kamyab H, Kumar G, Al-Muhtaseb AH, Ngamcharussrivichai C (2019) Cultivation of microalgae Chlorella sp. in municipal sewage for biofuel production and utilization of biochar derived from residue for the conversion of hematite iron ore (Fe2O3) to iron (Fe) – integrated algal biorefinery. Energy 189:116128 . https://doi.org/10.1016/j.energy.2019.116128

  49. Raeisossadati M, Vadiveloo A, Bahri PA, Parlevliet D, Moheimani NR (2019) Treating anaerobically digested piggery effluent (ADPE) using microalgae in thin layer reactor and raceway pond. J Appl Phycol 31:2311–2319. https://doi.org/10.1007/s10811-019-01760-6

    Article  CAS  Google Scholar 

  50. Skorupskaite V, Makareviciene V, Levisauskas D (2015) Optimization of mixotrophic cultivation of microalgae Chlorella sp. for biofuel production using response surface methodology. Algal Res 7:45–50. https://doi.org/10.1016/j.algal.2014.12.001

    Article  Google Scholar 

  51. Anto S, Pugazhendhi A, Mathimani T (2019) Lipid enhancement through nutrient starvation in Chlorella sp. and its fatty acid profiling for appropriate bioenergy feedstock. Biocatal Agric Biotechnol 20:101179 . https://doi.org/10.1016/j.bcab.2019.101179

  52. Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N (2012) Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: Evaluation for biodiesel production. Biomass Bioenerg 37:60–66. https://doi.org/10.1016/j.biombioe.2011.12.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Coordination for the Improvement of Higher Education Personnel (CAPES) for financial support through grant numbers 88887.372659/2019-00; the FAPESP Research Foundation for the technical support provided for the thematic project (grant numbers 2015/20630-4); the Ma. Danúbia Santiago Martins, for the help in the raceway design and AutoCAD® plotting; and the company AgnoLab for the raceway printing.

Funding

This work was supported by the Coordination for the Improvement of Higher Education Personnel — CAPES (grant numbers 88887.372659/2019–00) and the São Paulo Research Foundation — FAPESP (thematic project) (grant numbers 2015/20630–4).

Author information

Authors and Affiliations

Authors

Contributions

Bianca Ramos Estevam: conceptualization, methodology, formal analysis, investigation, writing — original draft, and visualization.

Luisa Fernanda Ríos Pinto: conceptualization, supervision, validation, and writing review and editing.

Rubens Maciel Filho: supervision, resources, and funding acquisition.

Leonardo Vasconcelos Fregolente: conceptualization, supervision, resources, funding acquisition, project administration, and writing — review and editing.

Corresponding author

Correspondence to Luisa Fernanda Ríos Pinto.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estevam, B.R., Pinto, L.F.R., Filho, R.M. et al. Growth and Metabolite Production in Chlorella sp.: Analysis of Cultivation System and Nutrient Reduction. Bioenerg. Res. 16, 1829–1840 (2023). https://doi.org/10.1007/s12155-022-10532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10532-z

Keywords

Navigation