Skip to main content
Log in

Biomass and lipid characterization of microalgae genera Botryococcus, Chlorella, and Desmodesmus aiming high-value fatty acid production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

A Correction to this article was published on 14 April 2022

This article has been updated

Abstract

Microalgae have been largely considered for biofuel production; however, further research focusing on its wide potential also in food, cosmetic, and pharmaceutical industries is still scarce. It is a promising raw material for several bioproducts, due to high growth rate, CO2 biofixation, and nutrient assimilation from wastewater and does not require large areas for cultivation compared to conventional crops. This study characterized six microalgae (Chlorella sp., C. vulgaris, Desmodesmus sp., D. brasiliensis, Botryococcus braunii, and B. terribilis) regarding growth parameters, total protein, carbohydrate, lipid, ash, and chlorophyll contents. The focus was lipid composition; thus, detailed results of fatty acid profile and polar lipid identification in total lipids are presented. The highest biomass productivity (42.6 mg L−1 day−1) and third highest lipid content (21.9%) were achieved by C. vulgaris, with 23.0% α-linolenic and 5.6% γ-linolenic in total fatty acids. Both are of interest for food and pharmaceutical industries and a vegan alternative to currently consumed fish oil. B. braunii showed higher lipid accumulation, oleic acid as the major fatty acid, but significantly low growth rate. B. terribilis presented intense lipid accumulation, at intra- and extracellular levels, but a high percentage of lipids should be hydrocarbons. Lipid and biomass characterization identified different bioproducts and high-value food additives that could be explored to establish a multi-product biorefinery instead of focusing exclusively on biodiesel production, which has been extensively studied but is not economic competitive in the current market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Matsumoto H, Shioji N, Hamasaki A et al (1995) Carbon dioxide fixation by/viicroalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 51:12

    Google Scholar 

  2. Duarte JH, Costa JAV (2017) Synechococcus nidulans from a thermoelectric coal power plant as a potential CO2 mitigation in culture medium containing flue gas wastes. Bioresour Technol 241:21–24. https://doi.org/10.1016/j.biortech.2017.05.064

    Article  Google Scholar 

  3. Ji M-K, Yun H-S, Hwang J-H, Salama ES, Jeon BH, Choi J (2017) Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production. Environ Technol 38:2085–2092. https://doi.org/10.1080/09593330.2016.1246145

    Article  Google Scholar 

  4. Collotta M, Champagne P, Mabee W, Tomasoni G (2018) Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Res 29:12–21. https://doi.org/10.1016/j.algal.2017.11.013

    Article  Google Scholar 

  5. Salama E-S, Kurade MB, Abou-Shanab RAI et al (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sust Energ Rev 79:1189–1211. https://doi.org/10.1016/j.rser.2017.05.091

    Article  Google Scholar 

  6. Razzak SA, Ali SAM, Hossain MM, deLasa H (2017) Biological CO2 fixation with production of microalgae in wastewater – a review. Renew Sust Energ Rev 76:379–390. https://doi.org/10.1016/j.rser.2017.02.038

    Article  Google Scholar 

  7. Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F (2017) Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. J Environ Manag 203:299–315. https://doi.org/10.1016/j.jenvman.2017.08.012

    Article  Google Scholar 

  8. Ferreira A, Marques P, Ribeiro B, Assemany P, de Mendonça HV, Barata A, Oliveira AC, Reis A, Pinheiro HM, Gouveia L (2018) Combining biotechnology with circular bioeconomy: from poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Environ Res 164:32–38. https://doi.org/10.1016/j.envres.2018.02.007

    Article  Google Scholar 

  9. Ahmad S, Kothari R, Pathania D, Tyagi VV (2019) Optimization of nutrients from wastewater using RSMfor augmentation of Chlorella pyrenoidosa with enhanced lipid productivity, FAME content, and its quality assessment using fuel quality index. Biomass Convers Biorefinery:1–18. https://doi.org/10.1007/s13399-019-00443-z

  10. Borowitzka MA, Moheimani NR (2013) Algae for biofuels and energy. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  11. Chen C-Y, Yeh K-L, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81. https://doi.org/10.1016/j.biortech.2010.06.159

    Article  Google Scholar 

  12. Chen B, Wan C, Mehmood MA, Chang JS, Bai F, Zhao X (2017) Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–a review. Bioresour Technol 244:1198–1206. https://doi.org/10.1016/j.biortech.2017.05.170

    Article  Google Scholar 

  13. Paliwal C, Mitra M, Bhayani K et al (2017) Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.05.058

  14. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226. https://doi.org/10.1016/j.biortech.2012.08.003

    Article  Google Scholar 

  15. Tokunaga S, Sanda S, Uraguchi Y, Nakagawa S, Sawayama S (2019) Overexpression of the DOF-type transcription factor enhances lipid synthesis in Chlorella vulgaris. Appl Biochem Biotechnol 189:116–128. https://doi.org/10.1007/s12010-019-02990-7

    Article  Google Scholar 

  16. Gill SS, Mehmood MA, Ahmad N et al (2016) Strain selection, growth productivity and biomass characterization of novel microalgae isolated from fresh and wastewaters of upper Punjab, Pakistan. Front Life Sci 9:190–200. https://doi.org/10.1080/21553769.2016.1204957

    Article  Google Scholar 

  17. Francisco ÉC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403. https://doi.org/10.1002/jctb.2338

    Article  Google Scholar 

  18. Zhan J, Zhang Q, Qin M, Hong Y (2016) Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production. Front Environ Sci Eng 10:548–558. https://doi.org/10.1007/s11783-016-0831-4

    Article  Google Scholar 

  19. Gim GH, Kim JK, Kim HS, Kathiravan MN, Yang H, Jeong SH, Kim SW (2014) Comparison of biomass production and total lipid content of freshwater green microalgae cultivated under various culture conditions. Bioprocess Biosyst Eng 37:99–106. https://doi.org/10.1007/s00449-013-0920-8

    Article  Google Scholar 

  20. Muto M, Nojima D, Yue L et al (2017) Potential of water surface-floating microalgae for biodiesel production: floating-biomass and lipid productivities. J Biosci Bioeng 123:314–318. https://doi.org/10.1016/j.jbiosc.2016.09.015

    Article  Google Scholar 

  21. Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73

    Article  Google Scholar 

  22. Hanifzadeh MM, Sarrafzadeh MH, Tavakoli O (2012) Carbon dioxide biofixation and biomass production from flue gas of power plant using microalgae. In: Renewable Energy and Distributed Generation (ICREDG), 2012 Second Iranian Conference on. IEEE, pp 61–64

  23. Klinthong W (2015) A review: microalgae and their applications in CO2 capture and renewable energy. Aerosol Air Qual Res. https://doi.org/10.4209/aaqr.2014.11.0299

  24. Razzak SA, Hossain MM, Lucky RA et al (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energ Rev 27:622–653. https://doi.org/10.1016/j.rser.2013.05.063

    Article  Google Scholar 

  25. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. https://doi.org/10.1016/j.rser.2009.07.020

    Article  Google Scholar 

  26. Taleb A, Kandilian R, Touchard R, Montalescot V, Rinaldi T, Taha S, Takache H, Marchal L, Legrand J, Pruvost J (2016) Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production. Bioresour Technol 218:480–490. https://doi.org/10.1016/j.biortech.2016.06.086

    Article  Google Scholar 

  27. Maity JP, Bundschuh J, Chen C-Y, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives – a mini review. Energy 78:104–113. https://doi.org/10.1016/j.energy.2014.04.003

    Article  Google Scholar 

  28. Xia L, Yang H, He Q, Hu C (2015) Physiological responses of freshwater oleaginous microalgae Desmodesmus sp. NMX451 under nitrogen deficiency and alkaline pH-induced lipid accumulation. J Appl Phycol 27:649–659. https://doi.org/10.1007/s10811-014-0371-x

    Article  Google Scholar 

  29. Ho S-H, Chen C-NN, Lai Y-Y et al (2014) Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semi-continuous cultivation. Bioresour Technol 163:128–135. https://doi.org/10.1016/j.biortech.2014.04.028

    Article  Google Scholar 

  30. Ho S-H, Chang J-S, Lai Y-Y, Chen C-NN (2014) Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions. Bioresour Technol 156:108–116. https://doi.org/10.1016/j.biortech.2014.01.017

    Article  Google Scholar 

  31. Akgül F, Kizilkaya İT, Akgül R, Erduğan H (2017) Morphological and molecular characterization of Scenedesmus-like species from Ergene River basin (Thrace, Turkey). Turk J Fish Aquat Sci 17:609–619

    Article  Google Scholar 

  32. Moheimani NR, McHenry MP, de Boer K, Bahri PA (2015) Biomass and biofuels from microalgae. Springer International Publishing, Cham

    Book  Google Scholar 

  33. Bux F, Chisti Y (2016) Algae biotechnology. Springer International Publishing, Cham

    Book  Google Scholar 

  34. Moheimani NR, Cord-Ruwisch R, Raes E, Borowitzka MA (2013) Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J Appl Phycol 25:1653–1661. https://doi.org/10.1007/s10811-013-0012-9

    Article  Google Scholar 

  35. Nakamura Y, Li-Beisson Y (2016) Lipids in plant and algae development. Springer International Publishing, Cham

    Book  Google Scholar 

  36. Barba FJ (2017) Microalgae and seaweeds for food applications: challenges and perspectives. Food Res Int 99:969–970. https://doi.org/10.1016/j.foodres.2016.12.022

    Article  Google Scholar 

  37. Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr Int Rev J 3:1–7. https://doi.org/10.3945/an.111.000893

    Article  Google Scholar 

  38. Baéza E, Chartrin P, Bordeau T, Lessire M, Thoby JM, Gigaud V, Blanchet M, Alinier A, Leterrier C (2017) Omega-3 polyunsaturated fatty acids provided during embryonic development improve the growth performance and welfare of Muscovy ducks (Cairina moschata). Poult Sci 96:3176–3187. https://doi.org/10.3382/ps/pex147

    Article  Google Scholar 

  39. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001

    Article  Google Scholar 

  40. Kim S-K, Chojnacka K (2015) Marine algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany

    Book  Google Scholar 

  41. Hamilton RJ (1998) Lipid analysis in oils and fats. Springer US

    Google Scholar 

  42. Sharma SK, Nelson DR, Abdrabu R, Khraiwesh B, Jijakli K, Arnoux M, O’Connor MJ, Bahmani T, Cai H, Khapli S, Jagannathan R, Salehi-Ashtiani K (2015) An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies Biotechnol Biofuels 8:. https://doi.org/10.1186/s13068-015-0349-1

  43. Sarpal AS, Teixeira CMLL, Silva PRM, da Costa Monteiro TV, da Silva JI, da Cunha VS, Daroda RJ (2016) NMR techniques for determination of lipid content in microalgal biomass and their use in monitoring the cultivation with biodiesel potential. Appl Microbiol Biotechnol 100:2471–2485. https://doi.org/10.1007/s00253-015-7140-x

    Article  Google Scholar 

  44. Nuzzo G, Gallo C, d’Ippolito G et al (2013) Composition and quantitation of microalgal lipids by ERETIC 1H NMR method. Mar Drugs 11:3742–3753. https://doi.org/10.3390/md11103742

    Article  Google Scholar 

  45. Sun J, Xiong X, Wang M et al (2019) Microalgae biodiesel production in China: a preliminary economic analysis. Renew Sust Energ Rev 104:296–306. https://doi.org/10.1016/j.rser.2019.01.021

    Article  Google Scholar 

  46. Dibenedetto A, Colucci A, Aresta M (2016) The need to implement an efficient biomass fractionation and full utilization based on the concept of “biorefinery” for a viable economic utilization of microalgae. Environ Sci Pollut Res 23:22274–22283. https://doi.org/10.1007/s11356-016-6123-5

    Article  Google Scholar 

  47. ’t-Lam GP, Vermuë MH, Eppink MHM et al (2018) Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol 36:216–227. https://doi.org/10.1016/j.tibtech.2017.10.011

    Article  Google Scholar 

  48. Bai A, Jobbágy P, Durkó E (2011) Algae production for energy and foddering. Biomass Convers Biorefinery 1:163–171. https://doi.org/10.1007/s13399-011-0015-1

    Article  Google Scholar 

  49. Rippka R, Deruelles J, Waterbury JB, et al (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111:1–61

  50. Chu SP (1942) The influence of the mineral composition of the medium on the growth of planktonic algae: part I. Methods and Culture Media. J Ecol 30:284. https://doi.org/10.2307/2256574

    Article  Google Scholar 

  51. Stein JR (1973) Handbook of phycological methods: physiological and biochemical methods. Cambridge University Press

  52. Mercz TI (1994) A study of high lipid yielding microalgae with potential for large-scale production of lipids and polyunsaturated fatty acids. Murdoch University, School of Biological and Environmental Sciences

    Google Scholar 

  53. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  54. ASTM E1755-01 (2015) Standard test method for ash in biomass, ASTM International, West Conshohocken, PA, 2015, www.astm.org

  55. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  Google Scholar 

  56. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194. https://doi.org/10.1016/S0015-3796(17)30778-3

    Article  Google Scholar 

  57. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  Google Scholar 

  58. Hartman L, Lago R (1973) Rapid preparation of fatty acid methyl esters. Lab Pract 22:475–6 passim

  59. Neveux J, Lantoine F (1993) Spectrofluorometric assay of chlorophylls and phaeopigments using the least squares approximation technique. Deep Sea Res Part Oceanogr Res Pap 40:1747–1765

    Article  Google Scholar 

  60. Liu S, Elvira P, Wang Y, Wang W (2019) Growth and nutrient utilization of green algae in batch and semicontinuous autotrophic cultivation under high CO2 concentration. Appl Biochem Biotechnol 188:836–853. https://doi.org/10.1007/s12010-018-02940-9

    Article  Google Scholar 

  61. Nwoba EG, Parlevliet DA, Laird DW et al (2019) Light management technologies for increasing algal photobioreactor efficiency. Algal Res 39:101433. https://doi.org/10.1016/j.algal.2019.101433

    Article  Google Scholar 

  62. Blifernez-Klassen O, Chaudhari S, Klassen V, Wördenweber R, Steffens T, Cholewa D, Niehaus K, Kalinowski J, Kruse O (2018) Metabolic survey of Botryococcus braunii: impact of the physiological state on product formation. PLoS One 13:e0198976. https://doi.org/10.1371/journal.pone.0198976

    Article  Google Scholar 

  63. Dayananda C, Kumudha A, Sarada R, Ravishankar GA (2010) Isolation, characterization and outdoor cultivation of green microalgae Botryococcus sp. Sci Res Essays 5:2497–2505

    Google Scholar 

  64. Ghosh A, Khanra S, Mondal M et al (2017) Biochemical characterization of microalgae collected from north east region of India advancing towards the algae-based commercial production: biochemical evaluation of isolated microalgae. Asia Pac J Chem Eng 12:745–754. https://doi.org/10.1002/apj.2114

    Article  Google Scholar 

  65. Velazquez-Lucio J, Rodríguez-Jasso RM, Colla LM et al (2018) Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res J 5:780–791. https://doi.org/10.18331/BRJ2018.5.1.5

    Article  Google Scholar 

  66. Heo YM, Lee H, Lee C et al (2017) An integrative process for obtaining lipids and glucose from Chlorella vulgaris biomass with a single treatment of cell disruption. Algal Res 27:286–294. https://doi.org/10.1016/j.algal.2017.09.022

    Article  Google Scholar 

  67. Yao L, Gerde JA, Lee S-L, Wang T, Harrata KA (2015) Microalgae lipid characterization. J Agric Food Chem 63:1773–1787. https://doi.org/10.1021/jf5050603

    Article  Google Scholar 

  68. Cabanelas ITD, Marques SSI, de Souza CO, et al (2015) Botryococcus, what to do with it? Effect of nutrient concentration on biorefinery potential. Algal Res 11:43–49. https://doi.org/10.1016/j.algal.2015.05.009

  69. Diniz GS, Silva AF, Araújo OQF, Chaloub RM (2017) The potential of microalgal biomass production for biotechnological purposes using wastewater resources. J Appl Phycol 29:821–832. https://doi.org/10.1007/s10811-016-0976-3

    Article  Google Scholar 

  70. Ndikubwimana T, Zeng X, Murwanashyaka T, Manirafasha E, He N, Shao W, Lu Y (2016) Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study. Biotechnol Biofuels 9:1–11. https://doi.org/10.1186/s13068-016-0458-5

    Article  Google Scholar 

  71. Hirose M, Mukaida F, Okada S, Noguchi T (2013) Active hydrocarbon biosynthesis and accumulation in a green alga, Botryococcus braunii (race a). Eukaryot Cell 12:1132–1141. https://doi.org/10.1128/EC.00088-13

    Article  Google Scholar 

  72. Lee JW (2013) Advanced biofuels and bioproducts. Springer, New York

    Book  Google Scholar 

  73. Samorì G, Samorì C, Guerrini F, Pistocchi R (2013) Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res 47:791–801. https://doi.org/10.1016/j.watres.2012.11.006

    Article  Google Scholar 

  74. Lürling M (2003) Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Ann Limnol - Int J Limnol 39:85–101. https://doi.org/10.1051/limn/2003014

    Article  Google Scholar 

  75. Smedman A, Vessby B (2001) Conjugated linoleic acid supplementation in humans—metabolic effects. Lipids 36:773–781

    Article  Google Scholar 

  76. Mente A, de Koning L, Shannon HS, Anand SS (2009) A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med 169:659–669

    Article  Google Scholar 

  77. Micha R, Peñalvo JL, Cudhea F, Imamura F, Rehm CD, Mozaffarian D (2017) Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA 317:912–924. https://doi.org/10.1001/jama.2017.0947

    Article  Google Scholar 

  78. Vendruscolo RG, Facchi MMX, Maroneze MM, Fagundes MB, Cichoski AJ, Zepka LQ, Barin JS, Jacob-Lopes E, Wagner R (2018) Polar and non-polar intracellular compounds from microalgae: methods of simultaneous extraction, gas chromatography determination and comparative analysis. Food Res Int 109:204–212. https://doi.org/10.1016/j.foodres.2018.04.017

    Article  Google Scholar 

  79. Estruch R, Ros E, Salas-Salvadó J et al (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368:1279–1290. https://doi.org/10.1056/NEJMoa1200303

    Article  Google Scholar 

  80. Ma Y, Wang Z, Yu C et al (2014) Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour Technol 167:503–509. https://doi.org/10.1016/j.biortech.2014.06.047

    Article  Google Scholar 

  81. ANP n. 02/2018. National Agency of Petroleum, Natural Gas and Biofuels (Brazil), http://www.anp.gov.br/noticias/4261-anp-inicia-consulta-publica-sobre-mudancas-na-especificacao-do-diesel-bx-a-b30 [accessed 03 April 2019]

  82. Hoekman SK, Broch A, Robbins C et al (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16:143–169. https://doi.org/10.1016/j.rser.2011.07.143

    Article  Google Scholar 

  83. Selvarajan R, Felföldi T, Tauber T et al (2015) Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and Soda Lakes for biofuel production. Energies 8:7502–7521. https://doi.org/10.3390/en8077502

    Article  Google Scholar 

  84. Borowitzka MA, Beardall J, Raven JA (2016) The physiology of microalgae. Springer International Publishing, Cham

    Book  Google Scholar 

  85. Huang Y, Zhang D, Xue S, Wang M, Cong W (2016) The potential of microalgae lipids for edible oil production. Appl Biochem Biotechnol 180:438–451. https://doi.org/10.1007/s12010-016-2108-6

    Article  Google Scholar 

  86. de Souza MP, Hoeltz M, Gressler PD, et al (2018) Potential of microalgal Bioproducts: General Perspectives and Main Challenges. Waste Biomass Valorization. https://doi.org/10.1007/s12649-018-0253-6

  87. Singh J, Dhar DW (2019) Overview of carbon capture technology: microalgal biorefinery concept and state-of-the-art. Front Mar Sci 6:29. https://doi.org/10.3389/fmars.2019.00029

    Article  Google Scholar 

  88. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62. https://doi.org/10.1016/j.biortech.2017.01.006

    Article  Google Scholar 

  89. Li J, Liu Y, Cheng JJ, Mos M, Daroch M (2015) Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds. New Biotechnol 32:588–596. https://doi.org/10.1016/j.nbt.2015.02.001

    Article  Google Scholar 

  90. Bhattacharjee M (2016) Pharmaceutically valuable bioactive compounds of algae. Asian J Pharm Clin Res 9:43. https://doi.org/10.22159/ajpcr.2016.v9i6.14507

    Article  Google Scholar 

  91. Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17:304. https://doi.org/10.3390/md17050304

    Article  Google Scholar 

  92. Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26:709–722. https://doi.org/10.1016/j.sjbs.2017.11.003

  93. Dutta S, Neto F, Coelho MC (2016) Microalgae biofuels: a comparative study on techno-economic analysis & life-cycle assessment. Algal Res 20:44–52. https://doi.org/10.1016/j.algal.2016.09.018

    Article  Google Scholar 

  94. Hossain N, Mahlia TMI, Zaini J, Saidur R Techno-economics and sensitivity analysis of microalgae as commercial feedstock for bioethanol production. Environ Prog Sustain Energy 0: https://doi.org/10.1002/ep.13157

  95. Sun X-M, Ren L-J, Zhao Q-Y, Ji XJ, Huang H (2018) Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnol Biofuels 11:272. https://doi.org/10.1186/s13068-018-1275-9

    Article  Google Scholar 

  96. Sathasivam R, Ki J-S (2018) A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar Drugs 16:26. https://doi.org/10.3390/md16010026

    Article  Google Scholar 

  97. Ferreira GF, Ríos Pinto LF, Maciel Filho R, Fregolente LV (2019) A review on lipid production from microalgae: association between cultivation using waste streams and fatty acid profiles. Renew Sust Energ Rev 109:448–466. https://doi.org/10.1016/j.rser.2019.04.052

    Article  Google Scholar 

  98. Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88. https://doi.org/10.1080/10408410802086783

    Article  Google Scholar 

  99. Goyal G, Kuhn JN, Philippidis GP (2018) Light alkene production by cracking Picochlorum oculatum microalgae using aluminosilicate catalysts. Biomass Bioenergy 108:252–257. https://doi.org/10.1016/j.biombioe.2017.11.019

    Article  Google Scholar 

  100. Camacho F, Macedo A, Malcata F (2019) Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Mar Drugs 17:312. https://doi.org/10.3390/md17060312

    Article  Google Scholar 

  101. Kiron V, Sørensen M, Huntley M, et al (2016) Defatted biomass of the microalga, Desmodesmus sp., can replace fishmeal in the feeds for Atlantic salmon. Front Mar Sci 3. https://doi.org/10.3389/fmars.2016.00067

  102. Barone RSC, Sonoda DY, Lorenz EK, Cyrino JEP (2018) Digestibility and pricing of Chlorella sorokiniana meal for use in tilapia feeds. Sci Agric 75:184–190. https://doi.org/10.1590/1678-992x-2016-0457

    Article  Google Scholar 

  103. Manganaro JL, Lawal A, Goodall B (2015) Techno-economics of microalgae production and conversion to refinery-ready oil with co-product credits. Biofuels Bioprod Biorefin 9:760–777. https://doi.org/10.1002/bbb.1610

    Article  Google Scholar 

  104. Caporgno MP, Mathys A (2018) Trends in microalgae incorporation into innovative food products with potential health benefits. Front Nutr 5:58. https://doi.org/10.3389/fnut.2018.00058

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABIC) at the University of Campinas for providing access to equipment and assistance in microscopy analysis; the Thomson Mass Spectrometry Laboratory from the Institute of Chemistry at UNICAMP for providing polar lipid analysis; and Márcia C. F. Messias, from São Francisco University, for the assistance with solid-phase extraction methodology. The authors also thank Espaço da Escrita – Pró-Reitoria de Pesquisa – UNICAMP – for the language services provided.

Funding

This study was supported by the National Council for Scientific and Technological Development (CNPq), grant # 166844/2017-9, and the São Paulo Research Foundation (FAPESP), grants # 2014/10064-9 and 2015/20630-4.

Author information

Authors and Affiliations

Authors

Contributions

Ferreira, G.F.: conducted the experiments, especially acquisition and data interpretation; Ríos Pinto, L.F.: supervised and conceptualized the study and critically reviewed the manuscript; Carvalho, P.O.: contributed to SPE acquisition, data analysis and interpretation, and reviewed the manuscript; Coelho, M.B. and Eberlin, M.N.: carried out the GC/MS acquisition, data analysis and interpretation, and reviewed the manuscript; Fregolente, L.V. and Maciel Filho, R.: critically reviewed the manuscript and supervised the project.

Corresponding author

Correspondence to Luisa F. Ríos Pinto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statements regarding conflicts, consent, and human/animal rights

No conflicts, informed consent form, human or animal rights applicable.

Additional information

All the authors agree in submitting this article to Biomass Conversion and Biorefinery.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the version of this article initially published, there was an error in Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, G.F., Ríos Pinto, L.F., Carvalho, P.O. et al. Biomass and lipid characterization of microalgae genera Botryococcus, Chlorella, and Desmodesmus aiming high-value fatty acid production. Biomass Conv. Bioref. 11, 1675–1689 (2021). https://doi.org/10.1007/s13399-019-00566-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00566-3

Keywords

Navigation