Skip to main content
Log in

Colocalizations Between Several QTLs for Cell Wall Degradability and Composition in the F288 × F271 Early Maize RIL Progeny Raise the Question of the Nature of the Possible Underlying Determinants and Breeding Targets for Biofuel Capacity

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Understanding the genetic basis of the different traits which contribute to a given value of cell wall degradability is a key issue towards the breeding of grasses with higher feeding value or higher capability for bioenergy production. A quantitative trait loci (QTL) investigation for cell wall degradability and several cell wall component traits including lignin content, p-hydroxycinnamic acid content, and lignin monomeric structure was thus done with a simultaneous search for underlying candidate genes in the F288 × F271 recombinant inbred line progeny. Genotype effects were highly significant for all cell wall investigated traits (P < 0.001) and much higher than genotype × environment interaction effects. Out of 42 QTLs mapped, 11 and 23 QTLs explained more than 20 and 15 % of the observed trait phenotypic variation, respectively. Twenty-three QTLs were gathered into four large clusters shown in bins 3.06, 4.09, 6.05, and 6.07. Colocalizations of cell wall degradability QTLs occurred with lignin content QTLs and lignin structure QTLs. Moreover, for two positions, there were also colocalizations with etherified ferulic acid QTLs. Such simultaneous colocalizations between QTLs for cell wall degradability and both lignin- and ferulate-related traits led to questioning the possible underlying genetic determinant(s). A cluster of (linked) genes involved in the different mechanisms of cell wall biosynthesis and/or assembly is likely the simplest situation to consider. However, a single “master” regulation factor located upstream in the pathway of cell wall biosynthesis and assembly cannot be definitely ruled out. Candidate genes putatively involved in cell wall degradability variations highlighted especially the presence of ZmMYB Hv5/EgMYB1-like and COV-like genes in any of the clusters. Moreover, besides potential regulatory candidates, there are a number of candidates of still unknown functions. The question of the nature of the possible QTL underlying determinants is still partly unanswered, even if the results obtained strongly suggested that, in this progeny, genes involved in monolignol biosynthesis and important Arabidopsis NAC are not likely candidates. In addition, the positions of candidate genes suggested that ghost QTL positions should also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagents, procedures and some applications). ARS/USDA handbook no. 379, pp 1–20

  2. Riboulet C, Fabre F, Dénoue D, Martinant JP, Lefevre B, Barrière Y (2008) QTL mapping and candidate gene research for lignin content and cell wall digestibility in a topcross of a flint recombinant inbred line progeny harvested at silage stage. Maydica 53:1–9

    Google Scholar 

  3. Zhang Y, Culhaoglu T, Pollet B, Melin C, Denoue D, Barrière Y, Baumberger S, Méchin V (2011) Impact of lignin structure and cell wall reticulation on maize cell wall degradability. J Sci Food Agric 59:10129–10135

    Article  CAS  Google Scholar 

  4. Grabber JH, Mertens DR, Kim H, Funk C, Lu F, Ralph J (2009) Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J Sci Food Agric 89:122–129

    Article  CAS  Google Scholar 

  5. Barrière Y, Thomas J, Denoue D (2008) QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838 × F286. Plant Sci 175:585–595

    Article  Google Scholar 

  6. Barrière Y, Méchin V, Lefevre B, Maltese S (2012) QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross among an old Minnesota13 line and a modern Iodent line. Theor Appl Genet 125:531–549

    Article  PubMed  Google Scholar 

  7. Roussel V, Gibelin C, Fontaine AS, Barrière Y (2002) Genetic analysis in recombinant inbred lines of early dent forage maize. II. QTL mapping for cell wall constituents and cell wall digestibility from per se value and top cross experiments. Maydica 47:9–20

    Google Scholar 

  8. Courtial A, Thomas J, Reymond M, Méchin V, Grima-Pettenati J, Barrière Y (2013) Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize. Theor Appl Genet 126:1151–1165

    Article  CAS  PubMed  Google Scholar 

  9. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  10. Courtial A, Soler M, Chateigner-Boutin AL, Reymond M, Méchin V, Wang H, Grima-Pettenati J, Barrière Y (2013) Breeding grasses for silage feeding value or capacity to biofuel production: an updated list of genes involved in maize secondary cell wall biosynthesis and assembly. Maydica 58:67–102

    Google Scholar 

  11. Barrière Y, Gibelin C, Argillier O, Méchin V (2001) Genetic analysis and QTL mapping in forage maize based on recombinant inbred lines descended from the cross between F288 and F271. I—yield, earliness, starch and crude protein content. Maydica 46:253–266

    Google Scholar 

  12. Dence CW, Lin SY (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 33–61

    Chapter  Google Scholar 

  13. Hatfield RD, Jung HJG, Ralph J, Buxton DR, Weimer PJ (1994) A comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures. J Sci Food Agric 65:51–58

    Article  CAS  Google Scholar 

  14. Jung H, Mertens D, Payne A (1997) Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber. J Dairy Sci 80:1622–1628

    Article  CAS  PubMed  Google Scholar 

  15. Hatfield R, Fukushima RS (2005) Can lignin be accurately measured. Crop Sci 45:832–839

    Article  CAS  Google Scholar 

  16. Aufrère J, Michalet-Doreau B (1983) In vivo digestibility and prediction of digestibility of some by-products. In: EEC Seminar, Melle-Gontrod, Belgium, 26–29 September, pp 25–33

  17. Struik PC (1983) Physiology of forage maize (Zea mays L.) in relation to its production and quality. Ph.D. thesis, Agricultural University, Wageningen, The Netherlands, pp 1–252

  18. Dolstra O, Medema JH (1990) An effective screening method for genetic improvement of cell-wall digestibility in forage maize. In: Proceedings of the 15th Congress of the Maize and Sorghum Section of Eucarpia, 4–8 June, Baden, Austria, pp 258–270

  19. Argillier O, Barrière Y, Hébert Y (1995) Genetic variation and selection criterion for digestibility traits of forage maize. Euphytica 82:175–184

    Article  Google Scholar 

  20. Barrière Y, Guillet C, Goffner D, Pichon M (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. Anim Res 52:193–228

    Article  Google Scholar 

  21. Morrison WH, Akin DE, Himmelsbach DS, Gamble GR (1993) Investigation of the ester-linked and ether-linked phenolic constituents of cell-wall types of normal and brown-midrib pearl-millet using chemical isolation, microspectrophotometry and C-13 NMR-spectroscopy. J Sci Food Agric 63:329–337

    Article  CAS  Google Scholar 

  22. Méchin V, Argillier O, Menanteau V, Barrière Y, Mila I, Pollet B, Lapierre C (2000) Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems. J Sci Food Agric 80:574–580

    Article  Google Scholar 

  23. Ralph J, HatWeld RD, Quideau S, Helm RF, Grabber JH, Jung HJG (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116:9448–9456

    Article  CAS  Google Scholar 

  24. Hatfield RD, Ralph J, Grabber JH (1999) Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric 79:403–407

    Article  CAS  Google Scholar 

  25. Lindsay SE, Fry SC (2008) Control of diferulate formation in dicotyledonous and gramineous cell-suspension cultures. Planta 227:439–452

    Article  CAS  PubMed  Google Scholar 

  26. Roadhouse FE, MacDougall D (1956) A study of the nature of plant lignin by means of alkaline nitrobenzene oxidation. Biochem J 63:33–39

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Higuchi T, Kawamura I (1966) Occurrence of p-hydroxyphenylglycerol-beta-aryl ether structure in lignins. Holzforschung 20:16–21

    CAS  Google Scholar 

  28. Kobilinsky A (1983) MODLI, logiciel d'analyse de modèles linéaires. INRA, Laboratoire de Biométrie, Versailles

  29. Venables W, Ripley BB (1994) Modern applied statistics with Splus. Springer, New York

    Book  Google Scholar 

  30. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Utz H, Melchinger A (1996) PLABQTL: a program for composite interval mapping of QTL. J Agric Genomics 2:1–6

    Google Scholar 

  32. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  CAS  PubMed  Google Scholar 

  33. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Beavis WB (1998) QTL analyses: power, precision, and accuracy. In: Patterson AH (ed) Molecular dissection of complex traits. CRC, Boca Raton, pp 145–162

    Google Scholar 

  35. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Riboulet C, Lefèvre B, Denoue D, Barrière Y (2008) Genetic variation in maize cell wall for lignin content, lignin structure, p -hydroxycinnamic acid content, and digestibility in a set of 19 lines at silage harvest maturity. Maydica 53:11–19

    Google Scholar 

  37. Barrière Y, Méchin V, Denoue D, Bauland C, Laborde J (2010) QTL for yield, earliness and cell wall digestibility traits in topcross experiments of F838 × F286 RIL progenies. Crop Sci 50:1761–1772

    Article  Google Scholar 

  38. Barrière Y, Emile JC, Traineau R, Surault F, Briand M, Gallais A (2004) Genetic variation for organic matter and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility crates. Maydica 49:115–126

    Google Scholar 

  39. Lay FT, Anderson MA (2005) Defensins—components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101

    Article  CAS  PubMed  Google Scholar 

  40. Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    Article  CAS  PubMed  Google Scholar 

  41. Hall H, Ellis B (2013) Transcriptional programming during cell wall maturation in the expanding Arabidopsis stem. BMC Plant Biology 13:14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Chen X, Vega-Sánchez ME, Verhertbruggen Y, Chiniquy D, Canlas PE, Fagerström A, Prak L, Christensen U, Oikawa A, Chern M, Zuo S, Fan L, Auer M, Willats WG, Bartley L, Harholt J, Scheller HV, Ronald PC (2012) Inactivation of OsIRX10 leads to decreased xylan content in rice stem cell walls and improved biomass saccharification. Mol Plant 6:570–573

    Article  PubMed  Google Scholar 

  43. Wissenbach M, Uberlacker B, Vogt F, Becker D, Salamini F, Rohde W (1993) MYB genes from Hordeum vulgare: tissue-specific expression of chimeric MYB promoter/Gus genes in transgenic tobacco. Plant J 4:411–422

    Article  CAS  PubMed  Google Scholar 

  44. Legay S, Lacombe E, Goicoechea M, Briere C, Seguin A, MacKay J, Grima-Pettenati J (2007) Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Sci 173:542–549

    Article  CAS  Google Scholar 

  45. Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J (2010) EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol 188:774–786

    Article  CAS  PubMed  Google Scholar 

  46. Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168:123–140

    Article  CAS  PubMed  Google Scholar 

  47. Guo Y, Qin G, Gu H, Qu LJ (2009) Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Plant Cell 21:3518–3534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Fornalé S, Sonbol FM, Maes T, Capellades M, Puigdomènech P, Rigau J, Caparrós-Ruiz D (2006) Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol 62:809–823

    Article  PubMed  Google Scholar 

  49. Sonbol FM, Fornalé S, Cappellades M, Encina A, Tourino S, Torres JL, Rovira P, Ruel K, Puigdomenech P, Rigau J, Caparros-Ruiz D (2009) The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Mol Biol 70:283–296

    Article  CAS  PubMed  Google Scholar 

  50. Fornalé S, Shi X, Chai C, Encina A, Irar S, Capellades M, Fuguet E, Torres JL, Rovira P, Puigdomènech P, Rigau J, Grotewold E, Gray J, Caparrós-Ruiz D (2010) ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J 64:633–644

    Article  PubMed  Google Scholar 

  51. Gray J, Caparros-Ruiz D, Grotewold E (2012) Grass phenylpropanoids: regulates before using. Plant Sci 184:112–120

    Article  CAS  PubMed  Google Scholar 

  52. Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567

    Article  CAS  PubMed  Google Scholar 

  53. Zhong R, Lee C, McCarthy RL, Reeves CK, Jones EG, Ye ZH (2011) Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Plant Cell Physiol 52:1856–1871

    Article  CAS  PubMed  Google Scholar 

  54. Parker G, Schofield R, Sundberg B, Turner S (2003) Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 130:2139–2148

    Article  CAS  PubMed  Google Scholar 

  55. Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cezard L, Le Bris P, Borrega N, Herve J, Blondet E, Balzergue S, Lapierre C, Jouanin L (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:1124–1137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Persson S, Wei HR, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102:8633–8638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG (2010) Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J 2:689–703

    Article  Google Scholar 

  58. Lafarguette F, Leple JC, Dejardin A, Laurans F, Costa G, Lesage-Descauses MC, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    Article  CAS  Google Scholar 

  59. Dahiya P, Findlay K, Roberts K, McCann MC (2006) A fasciclin-domain containing gene, ZeFLA11, is expressed exclusively in xylem elements that have reticulate wall thickenings in the stem vascular system of Zinnia elegans cv. Envy. Planta 223:1281–1291

    Article  CAS  PubMed  Google Scholar 

  60. Qiu D, Wilson IW, Gan S, Washusen R, Moran GF, Southerton SG (2008) Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers. New Phytol 179:94–103

    Article  CAS  PubMed  Google Scholar 

  61. Shi H, Kim YS, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Li Y, Jones L, McQueen-Mason S (2003) Expansins and cell growth. Curr Opin Plant Biol 6:603–610

    Article  CAS  PubMed  Google Scholar 

  63. Im KH, Cosgrove DT, Jones AM (2000) Subcellular localization of expansin mRNA in xylem cells. Plant Physiol 123:463–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Milioni D, Sado PE, Stacey NJ, Domingo C, Roberts K, McCann MC (2001) Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system. Plant Mol Biol 47:221–238

    Article  CAS  PubMed  Google Scholar 

  65. Muller B, Bourdais G, Reidy B, Bencivenni C, Massonneau A, Condamine P, Rolland G, Conéjéro G, Rogowsky P, Tardieu F (2007) Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation. Plant Physiol 143:278–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Courtial A, Jourda C, Arribat S, Balzergue S, Huguet S, Reymond M, Grima-Pettenati J, Barrière Y (2012) Comparative expression of cell wall related genes in four maize RILs and one parental line of variable lignin content and cell wall degradability. Maydica 57:56–74

    Google Scholar 

  67. Ko JH, Kim WC, Han KH (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J 60:649–665

    Article  CAS  PubMed  Google Scholar 

  68. Kim WC, Ko JH, Han KH (2012) Identification of a cis-acting regulatory motif recognized by MYB46, a master transcriptional regulator of secondary wall biosynthesis. Plant Mol Biol 78:489–501

    Article  CAS  PubMed  Google Scholar 

  69. Chavigneau H, Goué N, Courtial A, Jouanin L, Reymond M, Méchin V, Barrière Y (2012) QTL for floral stem lignin content and degradability in three recombinant inbred line (RIL) progenies of Arabidopsis thaliana and search for candidate genes involved in cell wall biosynthesis and degradability. OJGen 2:7–30

    Article  CAS  Google Scholar 

  70. Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  CAS  PubMed  Google Scholar 

  71. Grima-Pettenati J, Soler M, Camargo E, Wang H (2012) Transcriptional regulation of the lignin biosynthetic pathway revisited: new players and insights. In: Jouanin L, Lapierre C (eds) Advances in botanical research, volume 61, chapter 6. Academic, New York, pp 173–218

    Google Scholar 

  72. Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 1–11:173

    Article  Google Scholar 

  74. Besombes S, Mazeau K (2005) The cellulose/lignin assembly assessed by molecular modeling. Part 2: seeking for evidence of organization of lignin molecules at the interface with cellulose. Plant Physiol Biochem 43:277–286

    Article  CAS  PubMed  Google Scholar 

  75. Grabber JH, Ralph J, Hatfield RD (2000) Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. J Agric Food Chem 48:6106–6113

    Article  CAS  PubMed  Google Scholar 

  76. Casler MD, Jung HJG (1999) Selection and evaluation of smooth bromegrass clones with divergent lignin or etherified ferulic acid concentration. Crop Sci 39:1866–1873

    Article  CAS  Google Scholar 

  77. Lam TBT, Iiyama K, Stone BA (2003) Hot alkali-labile linkages in the wall of the forage grass Phalaris aquatica and Lolium perenne and their relation to in vitro wall digestibility. Phytochemistry 64:603–607

    Article  CAS  PubMed  Google Scholar 

  78. Jung HG, Phillips RL (2010) Putative seedling ferulate ester (sfe) maize mutant: morphology, biomass yield, and stover cell wall composition and rumen degradability. Crop Sci 50:403–418

    Article  Google Scholar 

  79. Barrière Y, Méchin V, Lafarguette F, Manicacci D, Guillon F, Wang H, Lauressergues D, Pichon M, Bosio M, Tatout C (2009) Toward the discovery of maize cell wall genes involved in silage maize quality and capacity to biofuel production. Maydica 54:161–198

    Google Scholar 

  80. Barrière Y, Ralph J, Méchin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C (2004) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. CR Biol 327:847–860

    Article  Google Scholar 

  81. Tamasloukht B, Lam MS-JWQ, Martinez Y, Tozo K, Barbier O, Jourda C, Jauneau A, Borderie G, Balzergue S, Renou JP, Huguet S, Martinant JP, Tatout C, Lapierre C, Barrière Y, Goffner D, Pichon M (2011) Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression. J Exp Bot 62:3837–3848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Park SH, Mei CS, Pauly M, Ong RG, Dale BE, Sabzikar R, Fotoh H, Nguyen T, Sticklen M (2013) Downregulation of maize cinnamoyl-coenzyme A reductase via RNA interference technology causes brown midrib and improves ammonia fiber expansion-pretreated conversion into fermentable sugars for biofuels. Crop Sci 52:2687–2701

    Article  Google Scholar 

  83. Zhong R, Ye ZH (2009) Transcriptional regulation of lignin biosynthesis. Plant Signaling Behavior 4:1–7

    Article  Google Scholar 

  84. Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Piston F, Uauy C, Fu L, Langston J, Labavitch J, Dubcovsky J (2010) Down-regulation of four putative arabinoxylan feruloyl-transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls. Planta 231:677–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RA (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci USA 109:989–993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K, Carroll A, Ulvskov P, Harholt J, Keasling JD, Pauly M, Scheller HV, Ronald PC (2012) XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc Natl Acad Sci USA 109:17117–17122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by INRA and the maize breeding companies (Advanta, Caussade Semences, Limagrain Europe, MaïsAdour, Monsanto SAS, Pioneer Génétique, Pau Euralis, R2n RAGT Semences, SDME KWS France, and Syngenta Seeds) involved in the ProMaïs–INRA “ZeaWall” network on maize cell wall lignification and degradability. The authors thank all colleagues involved in seed multiplications, field experiments, and biochemical and molecular analyses carried out at INRA Lusignan, INRA Saint-Martin-de-Hinx, INRA Versailles, and LRSV Castanet-Tolosan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Barrière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courtial, A., Méchin, V., Reymond, M. et al. Colocalizations Between Several QTLs for Cell Wall Degradability and Composition in the F288 × F271 Early Maize RIL Progeny Raise the Question of the Nature of the Possible Underlying Determinants and Breeding Targets for Biofuel Capacity. Bioenerg. Res. 7, 142–156 (2014). https://doi.org/10.1007/s12155-013-9358-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9358-8

Keywords

Navigation