Skip to main content
Log in

QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern Iodent line

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In order to contribute to the inventory of genomic areas involved in maize cell wall lignification and degradability, QTL analyses were investigated in a RIL progeny between an old Minnesota13 dent line (WM13) and a modern Iodent line (RIo). Significant variation for agronomic- and cell wall-related traits was observed for the RIL per se (plants without ears) and topcross (whole plants) experiments after crossing with both old (Ia153) and modern tester (RFl) lines. Three QTLs for stover (plant without ear) yield were observed in per se experiments, with alleles increasing yield originating from RIo in two genomic locations with the highest effects. However, no QTL for whole plant yield was detected in topcross experiments, despite the fact that two QTLs for starch content were shown with increasing alleles originating from the modern RIo line. Fifteen lignin QTLs were shown, including a QTL for Klason lignins in per se experiments, located in bin 2.04, which explained 43 % of the observed genetic variation. Thirteen QTLs for p-hydroxycinnamic acid contents and nine QTLs related to the monomeric composition of lignin were shown in per se experiments, with syringaldehyde and diferulate QTLs explaining nearly 25 % of trait variations. Nine and seven QTLs for cell wall digestibility were mapped in per se and topcross experiments, respectively. Five of the per se QTLs explained more than 15 % of the variation, up to nearly 25 %. QTL positions in bins 2.06, 5.04, 5.08 and 8.02 for ADL/NDF, IVNDFD, lignin structure and/or p-hydroxycinnamic acid contents have not been previously shown and were thus first identified in the RIo × WM13 progeny. Based on QTL colocalizations, differences in cell wall degradability between RIo and WM13 were less often related to acid detergent lignin (ADL) content than in previous RIL investigations. QTL colocalizations then highlighted the probable importance of ferulate cross linkages in variation for cell wall digestibility. No colocalizations of QTL for cell wall phenolic-related traits were shown with genes involved in monolignol biosynthesis or polymerization. In contrast, colocalizations were most often shown with MYB and NAC transcription factors, including orthologs of master genes involved in Arabidopsis secondary wall assembly. QTL colocalizations also strengthened the probable involvement of members of the CoA-dependent acyltransferase PF02458 family in the feruloylation of arabinoxylan chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Argillier O, Barrière Y, Hébert Y (1995) Genetic variation and selection criterion for digestibility traits of forage maize. Euphytica 82:175–184

    Article  Google Scholar 

  • Aufrère J, Michalet-Doreau B (1983) In vivo digestibility and prediction of digestibility of some by-products. In: EEC seminar, Melle-Gontrod, Belgium, 26–29 September, pp 25–33

  • Barrière Y, Guillet C, Goffner D, Pichon M (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. Anim Res 52:193–228

    Article  Google Scholar 

  • Barrière Y, Emile JC, Traineau R, Surault F, Briand M, Gallais A (2004a) Genetic variation for organic matter and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility crates. Maydica 49:115–126

    Google Scholar 

  • Barrière Y, Dias-Gonçalves G, Emile JC, Lefèvre B (2004b) Higher intake of DK265 corn silage by dairy cattle. J Dairy Sci 87:1439–1445

    Article  PubMed  Google Scholar 

  • Barrière Y, Alber D, Dolstra O, Lapierre C, Motto M, Ordas A, Van Waes J, Vlasminkel L, Welcker C, Monod JP (2006) Past and prospects of forage maize breeding in Europe. II. History, germplasm evolution and correlative agronomic changes. Maydica 51:435–449

    Google Scholar 

  • Barrière Y, Thomas J, Denoue D (2008) QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838 × F286. Plant Sci 175:585–595

    Article  Google Scholar 

  • Barrière Y, Méchin V, Lafarguette F, Manicacci D, Guillon F, Wang H, Lauressergues D, Pichon M, Bosio M, Tatout C (2009) Toward the discovery of maize cell wall genes involved in silage maize quality and capacity to biofuel production. Maydica 54:161–198

    Google Scholar 

  • Barrière Y, Méchin V, Denoue D, Bauland C, Laborde J (2010) QTL for yield, earliness and cell wall digestibility traits in topcross experiments of F838 × F286 RIL progenies. Crop Sci 50:1761–1772

    Article  Google Scholar 

  • Burk D, Ye Z (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 14:2145–2160

    Article  PubMed  CAS  Google Scholar 

  • Casler MD, Jung HJG (1999) Selection and evaluation of smooth bromegrass clones with divergent lignin or etherified ferulic acid concentration. Crop Sci 39:1866–1873

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Dardenne P, Andrieu J, Barrière Y, Biston R, Demarquilly C, Femenias N, Lila M, Maupetit P, Rivière F, Ronsin T (1993) Composition and nutritive value of whole maize plants fed fresh to sheep. II prediction of the in vivo organic matter digestibility. Ann de Zootechnie 42:251–270

    Article  Google Scholar 

  • Dence CW, Lin SY (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 33–61

    Chapter  Google Scholar 

  • Dennis DT, Blakeley SD (2000) Carbohydrate metabolism. In: Buchanan B, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologist, Rockville, pp 630–675

    Google Scholar 

  • Dolstra O, Medema JH (1990) An effective screening method for genetic improvement of cell-wall digestibility in forage maize. In: Proceedings 15th congress maize and sorghum section of Eucarpia, 4–8 June, Baden, pp 258–270

  • Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288

    Article  PubMed  CAS  Google Scholar 

  • Fontaine AS, Briand M, Barrière Y (2003) Genetic variation and QTL mapping of para-coumaric and ferulic acid contents in maize stover at silage harvest. Maydica 48:75–82

    Google Scholar 

  • Fornalé S, Sonbol FM, Maes T, Capellades M, Puigdomènech P, Rigau J, Caparrós-Ruiz D (2006) Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol 62:809–823

    Article  PubMed  Google Scholar 

  • Fornalé S, Shi X, Chai C, Encina A, Irar S, Capellades M, Fuguet E, Torres JL, Rovira P, Puigdomènech P, Rigau J, Grotewold E, Gray J, Caparrós-Ruiz D (2010) ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J 64:633–644

    Article  PubMed  Google Scholar 

  • Gerdes JT, Behr CF, Coors JG, Tracy WF (1993) Compilation of north America maize breeding Germplasm. In: Tracy WF, Coors JG, Geadelman JL (eds) Crop Science Society of America, Madison, pp 1–202

  • Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagents, procedures and some applications), US Department of Agriculture Science Handbook n°379, pp 1–20

  • Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567

    Article  PubMed  CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J, Zon J, Amrhein N (1995) Ferulate cross-linking in cell-walls isolated from maize cell-suspensions. Phytochemistry 40:1077–1082

    Article  CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD, Quideau S (1997) p-Hydroxyphenyl, guaiacyl, and syringyl lignins have similar inhibitory effects on wall degradability. J Agric Food Chem 45:2530–2532

    Article  CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (2000) Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. J Agric Food Chem 48:6106–6113

    Article  PubMed  CAS  Google Scholar 

  • Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. C R Biol 327:455–465

    Article  PubMed  CAS  Google Scholar 

  • Grabber JH, Mertens DR, Kim H, Funk C, Lu FC, Ralph J (2009) Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J Sci Food Agric 89:122–129

    Article  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Hatfield R, Fukushima RS (2005) Can lignin be accurately measured. Crop Sci 45:832–839

    Article  CAS  Google Scholar 

  • Hatfield RD, Jung HJG, Ralph J, Buxton DR, Weimer PJ (1994) A comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures. J Sci Food Agric 65:51–58

    Article  CAS  Google Scholar 

  • Hatfield RD, Ralph J, Grabber JH (1999) Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric 79:403–407

    Article  CAS  Google Scholar 

  • Higuchi T, Kawamura I (1966) Occurrence of p-hydroxyphenylglycerol-beta-aryl ether structure in lignins. Holzforschung 20:16–21

    CAS  Google Scholar 

  • Jenkins MT (1936) Corn improvement. In: Bressman ES (ed) Yearbook of agriculture 1936. USDA, Washington, DC, pp 455–522

    Google Scholar 

  • Jung HG, Phillips RL (2010) Putative seedling ferulate ester (sfe) maize mutant: morphology, biomass yield, and stover cell wall composition and rumen degradability. Crop Sci 50:403–418

    Article  Google Scholar 

  • Jung H, Mertens D, Payne A (1997) Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber. J Dairy Sci 80:1622–1628

    Article  PubMed  CAS  Google Scholar 

  • Jung HG, Mertens D, Phillips RL (2011) Effect of reduced ferulate-mediated lignin/arabinoxylan cross-linking in corn silage on feed intake, digestibility, and milk production. J Dairy Sci 94:5124–5137

    Article  PubMed  CAS  Google Scholar 

  • Kendall MG, Stuart A (1961) The advanced theory of statistics. Inference and relationship. In: Charles Griffin et al. (eds) vol II, 3rd edn. London

  • Ko JH, Kim WC, Han KH (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J 60:649–665

    Article  PubMed  CAS  Google Scholar 

  • Kobilinsky A (1983) MODLI, logiciel d’analyse de modèles linéaires, INRA

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860

    Article  PubMed  CAS  Google Scholar 

  • Lam TBT, Iiyama K, Stone BA (2003) Hot alkali-labile linkages in the wall of the forage grass Phalaris aquatica and Lolium perenne and their relation to in vitro wall digestibility. Phytochemistry 64:603–607

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Larièpe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012) The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190:795–811

    Article  PubMed  Google Scholar 

  • Legay S, Lacombe E, Goicoechea M, Briere C, Seguin A, MacKay J, Grima-Pettenati J (2007) Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Sci 173:542–549

    Article  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander ES (1992) Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1

  • Lindsay SE, Fry SC (2008) Control of diferulate formation in dicotyledonous and gramineous cell-suspension cultures. Planta 227:439–452

    Article  PubMed  CAS  Google Scholar 

  • MacAdam JW, Grabber JH (2002) Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215:785–793

    Article  PubMed  CAS  Google Scholar 

  • Méchin V, Argillier O, Menanteau V, Barrière Y, Mila I, Pollet B, Lapierre C (2000) Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems. J Sci Food Agric 80:574–580

    Article  Google Scholar 

  • Méchin V, Argillier O, Hébert Y, Guingo E, Moreau L, Charcosset A, Barrière Y (2001) Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize. Crop Sci 41:690–697

    Article  Google Scholar 

  • Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53

    Article  PubMed  CAS  Google Scholar 

  • Mitsuda N, Seki M, Shonozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  PubMed  CAS  Google Scholar 

  • Morrison WH, Akin DE, Himmelsbach DS, Gamble GR (1993) Investigation of the ester-linked and ether-linked phenolic constituents of cell-wall types of normal and brown-midrib pearl-millet using chemical isolation, microspectrophotometry and C-13 NMR-spectroscopy. J Sci Food Agric 63:329–337

    Article  CAS  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558

    PubMed  CAS  Google Scholar 

  • Piston F, Uauy C, Fu L, Langston J, Labavitch J, Dubcovsky J (2010) Down-regulation of four putative arabinoxylan feruloyl-transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls. Planta 231:677–691

    Article  PubMed  CAS  Google Scholar 

  • Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung HJG (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116:9448–9456

    Article  CAS  Google Scholar 

  • Riboulet C, Fabre F, Dénoue D, Martinant JP, Lefevre B, Barrière Y (2008a) QTL mapping and candidate gene research for lignin content and cell wall digestibility in a topcross of a flint recombinant inbred line progeny harvested at silage stage. Maydica 53:1–9

    Google Scholar 

  • Riboulet C, Lefèvre B, Denoue D, Barrière Y (2008b) Genetic variation in maize cell wall for lignin content, lignin structure, p-hydroxycinnamic acid content, and digestibility in a set of 19 lines at silage harvest maturity. Maydica 53:11–19

    Google Scholar 

  • Roadhouse FE, MacDougall D (1956) A study of the nature of plant lignin by means of alkaline nitrobenzene oxidation. Biochem J 63:33–39

    PubMed  CAS  Google Scholar 

  • Roussel V, Gibelin C, Fontaine AS, Barrière Y (2002) Genetic analysis in recombinant inbred lines of early dent forage maize. II—QTL mapping for cell wall constituents and cell wall digestibility from per se value and top cross experiments. Maydica 47:9–20

    Google Scholar 

  • SAS Institute Inc. (1990) SAS Procedure Guide, Version 6, third edn. pp 1–705

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Schön C, Dhillon B, Utz H, Melchinger A (2010) High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet 120:321–332

    Article  PubMed  Google Scholar 

  • Struik (1983) Physiology of forage maize (Zea mays L.) in relation to its production and quality. PhD. Dissertation, Agricultural University, The Netherlands, pp 1–252

  • Tamagone L, Merida A, Parr A, Mackay S, Culianez-Marcia FA, Roberts K, Martin C (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154

    Google Scholar 

  • Tollenaar M, Wu J (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Conference information: symposium on post-green revolution trends in crop yield potential—increasing, stagnant, or greater resistance to stress held at the annual ASA-CSSA-SSSA October 19, 1998 BALTIMORE MARYLAND. Crop Sci 39:1597–1604

  • Tollenaar M, McCullough DE, Dwyer LM (1994) Physiological basis of the genetic improvement of corn. In: Sflafer GA (ed) Genetic improvement of field crops. M Dekker Inc, New York, pp 183–236

    Google Scholar 

  • Tollenaar M, Nissanka SP, Aguilera A, Dwyer L (1995) Improving stress tolerance: the key to increased corn yields. Agri-food Res Ontario 18:2–7

    Google Scholar 

  • Troyer AF, Hendrickson LG (2007) Background and importance of “Minnesota 13” Corn. Crop Sci 47:905–914

    Article  Google Scholar 

  • Utz H, Melchinger A (1996) PLABQTL: a program for composite interval mapping of QTL. J Agric Genomics 2:1–6

    Google Scholar 

  • Venables W, Ripley BB (1994) Modern applied statistics with Splus. Springer, New York

    Google Scholar 

  • Wissenbach M, Uberlacker B, Vogt F, Becker D, Salamini F, Rohde W (1993) MYB genes from Hordeum vulgare—tissue-specific expression of chimeric MYB promoter/Gus genes in transgenic tobacco. Plant J 4:411–422

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22:1249–1263

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T (2011) VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J 66:579–590

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhao C, Avci U, Grant EH, Haigler CH, Beers EP (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J 53:425–436

    Article  PubMed  CAS  Google Scholar 

  • Zhong RQ, Ye ZH (2009) Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 4:1–7

    Article  Google Scholar 

  • Zhong RQ, Burk DH, Morrison WH, Ye ZH (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007a) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611

    Article  PubMed  CAS  Google Scholar 

  • Zhong RQ, Richardson EA, Ye ZH (2007b) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776–2792

    Article  PubMed  CAS  Google Scholar 

  • Zhong RQ, Lee C, McCarty RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Lee C, Zhong RQ, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

William Bolingue, Françoise Fabre, Chystel Gibelin, and Cédric Riboulet have contributed to RIL genotyping. Dominique Denoue, Christiane Minault, and Pascal Vernoux were in charge of experimentations carried out in Lusignan. Corinne Melin managed the maize reference database at INRA Lusignan. We are grateful to the anonymous reviewers and editor for helpful advice and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Barrière.

Additional information

Communicated by T. Luebberstedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrière, Y., Méchin, V., Lefevre, B. et al. QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern Iodent line. Theor Appl Genet 125, 531–549 (2012). https://doi.org/10.1007/s00122-012-1851-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1851-5

Keywords

Navigation