Skip to main content
Log in

Exact solitary wave solutions for a system of some nonlinear space–time fractional differential equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We have enumerated new and exact general wave solutions, along with multiple exact soliton solutions of space–time nonlinear fractional differential equations (FDE), namely Zakharov–Kuznetsov–Benjamin–Bona–Mahony (ZKBBM), foam drainage and symmetric regularised long-wave (SRLW) equations, by employing a relatively new technique called (\(G^\prime /G, 1/G)\)-expansion method. Also, based on fractional complex transformation and the properties of the modified Riemann–Liouville fractional-order operator, the fractional partial differential equations transform into a form of ordinary differential equation (ODE). This method is a recollection of the commutation of the well-appointed (\(G^\prime /G\))-expansion method introduced by Wang et al, Phys. Lett. A 372, 417 (2008) In this paper, it is mentioned that the two-variable (\(G^\prime /G, 1/G\))-expansion method is more legitimate, modest, sturdy and effective in the sense of theoretical and pragmatical point of view. Lastly, the peculiarities of these analytic solutions are illustrated graphically by utilising the computer symbolic programming Wolfram Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L Debnath, Int. J. Math. Edu. Sci. Technol.35(4), 487 (2004)

    Article  Google Scholar 

  2. R Herrmann, Fractional calculus: An introduction for physicists (World Scientific, Singapore, 2011)

    Book  Google Scholar 

  3. I Podlubny, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, in: Fractional differential equations (Academic Press, 1998) Vol. 198

  4. B L Guo, X K Pu and F H Huang, Fractional partial differential equations and their numerical solutions (Science Press, Beijing, 2011)

    MATH  Google Scholar 

  5. M Ekici, M Mirzazadeh, M Eslami, Q Zhou, S P Moshokoa and A Biswas, Optik 127(22), 10659 (2016)

    Article  ADS  Google Scholar 

  6. M Younis, J. Adv. Phys. 2, 220 (2013)

    Article  Google Scholar 

  7. E M E Zayed, Y A Amer and A G A Nowehy, Acta Math. Appl. Sin. Eng. Ser. 32(4), 793 (2016)

    Article  Google Scholar 

  8. N Taghizadeh, M Mirzazadeh, A S Paghaleh and J Vahidi, Ain Shams Eng. J. 3, 321(2012)

    Article  Google Scholar 

  9. M Younis, Appl. Math. 5(13), 1927 (2014)

    Article  Google Scholar 

  10. A Akbulut and M Kaplan, Comput. Math. Appl. 75, 876 (2018)

    Article  MathSciNet  Google Scholar 

  11. S Zhang and H Q Zhang, Phys. Lett. A 375(7), 1069 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  12. B Tang, Y He, L Wu and X Zhang, Phys. Lett. A 376(38–39), 2588 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  13. A Bekir, E Aksoy and O Guner, 2nd International Conference on Analysis and Applied Mathematics (ICAAM, 2014) Vol. 1611

  14. B Zheng, Commun. Theor. Phys. 58(5), 623 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  15. K A Gepreel and S Omran, Chin. Phys. B 21(11), ID. 110204 (2012)

  16. A Bekir and O Guner, Chin. Phys. B 22(11), ID 110202 (2013)

  17. R I Nuruddeen, J. Ocean Eng. Sci. 3, 11 (2018)

    Article  Google Scholar 

  18. O Guner and A Bekir, Waves Rand. Compl. Media 27(1), 163 (2017)

    Article  ADS  Google Scholar 

  19. W Liu and K Chen, Pramana – J. Phys. 81(3): 377 (2013)

    Article  ADS  Google Scholar 

  20. S Zhang, J L Tong and W Wang, Phys. Lett. A 372, 2254 (2008)

    Article  ADS  Google Scholar 

  21. M Eslami, Appl. Math. Comput. 285, 141 (2016)

    MathSciNet  Google Scholar 

  22. A A Gaber, A F Aljohani, A Ebaid and J T Machado, Nonlinear Dyn. 95(1), 361 (2019)

    Article  Google Scholar 

  23. S T Demiray and H Bulut, J. Nonlinear Sci. Appl. 9, 1349 (2016)

    Article  MathSciNet  Google Scholar 

  24. S T Demiray, Y Pandir and H Bulut, Abs. Appl. Anals. 2014, 13 (2014)

    Google Scholar 

  25. H Bulut, Y Pandir and S T Demiray, Int. J. Model. Opt. 4(4), 2014 (2014)

    Google Scholar 

  26. M Wang et al, Phys. Lett. A 372, 417 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. E Yasar and I B Giresunlu, Pramana – J. Phys. 87: 17 (2016)

    Article  ADS  Google Scholar 

  28. M Topsakal, O Guner, A Bekir and O Unsal, J. Phys.: Conf. Ser. 766, ID 012035 (2016)

  29. S T Mohyud-Din and S Bibi, Alexandria Eng. J. 57(2), 1003 (2018)

    Article  Google Scholar 

  30. M N Islam and M A Akbar, Cogent Phys. 5, ID 1422957 (2018)

  31. A Sonmezoglu, Adv. Math. Phys. 2015, ID 567842 (2015)

  32. G Jumarie, Appl. Math. Lett. 22, 378 (2009)

    Article  MathSciNet  Google Scholar 

  33. B Li, Y Chen and H Zhang, J. Phys. A 35(39), 8253 (2002)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hanif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, M., Habib, M.A. Exact solitary wave solutions for a system of some nonlinear space–time fractional differential equations. Pramana - J Phys 94, 7 (2020). https://doi.org/10.1007/s12043-019-1864-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1864-6

Keywords

PACS Nos

Navigation