Skip to main content
Log in

The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we implemented the functional variable method and the modified Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled KdV system. This method is extremely simple but effective for handling nonlinear time-fractional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L Debtnath, Nonlinear partial differential equations for scientists and engineers (Birkhäuser, Boston, 1997)

    Book  Google Scholar 

  2. A M Wazwaz, Partial differential equations methods and applications (Balkema, Rotterdam, 2002)

    MATH  Google Scholar 

  3. E Yusufoglu, Int. J. Nonlin. Sci. Numer. Simulat. 8, 153 (2007)

    Google Scholar 

  4. J H He and X H Wu, Comput. Math. Appl. 54, 881 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. J H He, J. Comput. Appl. Math. 207, 3 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. L-F Shi and J-Q Mo, Acta Phys. Sin. 62(4), 040203 (2013)

    Google Scholar 

  7. L Xu, Comput. Math. Appl. 54, 1071 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. L Xu, Comput. Math. Appl. 54, 1067 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. J H He, Int. J. Mod. Phys. B 20, 2561 (2006)

    Article  ADS  Google Scholar 

  10. J H He, Int. J. Mod. Phys. B 20, 1141 (2006)

    Article  ADS  MATH  Google Scholar 

  11. J H He, Phys. Lett. A 350, 87 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A Sadighi and D D Ganji, Int. J. Nonlin. Sci. Numer. Simulat. 8, 435 (2007)

    Google Scholar 

  13. S Q Wang and J H He, Chaos, Solitons and Fractals 35, 688 (2008)

    Article  ADS  MATH  Google Scholar 

  14. L Xu, Phys. Lett. A 368, 259 (2007)

    Article  ADS  Google Scholar 

  15. Z-L Tao, Chaos, Solitons and Fractals 41(2), 642 (2009)

    Article  ADS  MATH  Google Scholar 

  16. Z-L Tao, Comput. Math. Appl. 58(11–12), 2395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. X-W Zhou and L Wang, Comput. Math. Appl. 61, 2035 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. J H He, Chaos, Solitons and Fractals 30, 700 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. X H Wu and J H He, Comput. Math. Appl. 54(7–8), 966 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. S D Zhu, Int. J. Nonlin. Sci. Numer. Simulat. 8(3), 461 (2007)

    Google Scholar 

  21. Y-P Wang and D-F Xia, Comput. Math. Appl. 58(11–12), 2300 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. A M A El-Sayed, S Z Rida and A A M Arafa, Commun. Theor. Phys. (Beijing) 52, 992 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. M Inc, J. Math. Anal. Appl. 345, 476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. M M Rashidi, G Domairry, A Doosthosseini and S Dinarvand, Int. J. Math. Anal. 12, 581 (2008)

    MathSciNet  Google Scholar 

  25. L N Song and H Q Zhang, Chaos, Solitons and Fractals 40, 1616 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Z Z Ganji, D D Ganji, A D Ganji and M Rostamian, Numer. Methods Partial Differential Equations 26, 117 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. P K Gupta and M Singh, Comput. Math. Appl. 61, 50 (2011)

    MathSciNet  Google Scholar 

  28. G Jumarie, Appl. Math. Lett. 19, 873 (t)

    Article  MathSciNet  MATH  Google Scholar 

  29. S Zhang and H Q Zhang, Phys. Lett. A 375, 1069 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. B Lu, J. Math. Anal. Appl. 395, 684 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. A Zerarka, S Ouamane and A Attaf, Appl. Math. Comput. 217, 2897 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. A Zerarka, S Ouamane and A Attaf, Wav es in Random and Complex Media 21, 44 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. A Zerarka and S Ouamane, World J. Modeling and Simulation 6, 150 (2010)

    Google Scholar 

  34. A Bekir and S San, J. Mod. Math. Frontier 1, 5 (2012)

    Google Scholar 

  35. A C Çevikel, A Bekir, M Akar and S San, Pramana – J. Phys. 79, 337 (2012)

    Google Scholar 

  36. G Jumarie, Comput. Math. Appl. 51, 1367 (2006)

    Google Scholar 

  37. A K Golmankhaneh and D Baleanu, Signal Process. 91, 446 (2011)

    Google Scholar 

  38. Z Z Ganji, D D Ganji and Y Rostamiyan, Appl. Math. Model. 33, 3107 (2009)

  39. M Shateri and D D Ganji, Int. J. Differ. Eq. 2010 (2010), For details, see http://www.hindawi.com/journals/ijde/2010/954674

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WENJUN LIU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LIU, W., CHEN, K. The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana - J Phys 81, 377–384 (2013). https://doi.org/10.1007/s12043-013-0583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0583-7

Keywords

PACS Nos

Navigation