Skip to main content
Log in

Hadamard Fractional Differential Equations on an Unbounded Domain with Integro-initial Conditions

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we introduce and investigate a Hadamard-type fractional differential equation on the interval \((1, \infty )\) equipped with a new class of logarithmic type integro-initial conditions. We apply the Leggett–Williams fixed point theorem and the concept of iterative positive solutions to establish the existence of solutions for the problem at hand. Our results are new and enrich the literature on Hadamard-type fractional differential equations on the infinite domain. Examples illustrating the main results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article.

References

  1. Xu, C., Liu, Z., Li, P., Yan, J., Yao, L.: Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks. Neural Proces. Lett. 55, 6125–6151 (2023)

    Article  Google Scholar 

  2. Xu, C., Liu, Z., Liao, M., Li, P., Xiao, Q., Yuan, S.: Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: the case of Hopf bifurcation. Math. Comput. Simul. 182, 471–494 (2021)

    Article  MathSciNet  Google Scholar 

  3. Li, P., Gao, R., Xu, C., Li, Y., Akgül, A., Baleanu, D.: Dynamics exploration for a fractional-order delayed zooplankton-phytoplankton system. Chaos Solitons Fractals 166, 112975, 15 (2023)

    Article  MathSciNet  Google Scholar 

  4. Zhu, H., Peng, Y., Li, Y., Zeng, C.: Forward dynamics and memory effect in a fractional order chemostat minimal model with non-monotonic growth. Discrete Contin. Dyn. Syst. Ser. S 16, 2749–2764 (2023)

    Article  MathSciNet  Google Scholar 

  5. Fallahgoul, H.A., Focardi, S.M., Fabozzi, F.J.: Fractional Calculus and Fractional Processes with Applications to Financial Economics. Elsevier, Theory and Application (2017)

    Google Scholar 

  6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier, Amsterdam, The Netherlands (2006)

    Google Scholar 

  7. Hadamard, J.: Essai sur letude des fonctions donnees par leur developpment de Taylor. J. Mat. Pure Appl. Ser. 8, 101–186 (1892)

    Google Scholar 

  8. Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations. Inclusions and Inequalities. Springer, Cham (2017)

    Book  Google Scholar 

  9. Ardjouni, A.: Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions. AIMS Math. 4, 1101–1113 (2019)

    Article  MathSciNet  Google Scholar 

  10. Subramanian, M., Alzabut, J., Baleanu, D., Samei, M.E., Zada, A.: Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Adv. Differ. Equ. 267, 46 (2021)

    MathSciNet  Google Scholar 

  11. Adjabi, Y., Samei, M.E., Matar, M.M., Alzabut, J.: Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions. AIMS Math. 6, 2796–2843 (2021)

    Article  MathSciNet  Google Scholar 

  12. Fahd, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 10 (2014)

    Article  MathSciNet  Google Scholar 

  14. Liang, S., Zhang, J.: Existence of three positive solutions of \(m\)-point boundary value problems for some nonlinear fractional differential equations on an infinite interval. Comput. Math. Appl. 61, 3343–3354 (2011)

    Article  MathSciNet  Google Scholar 

  15. Wang, G.: Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval. Appl. Math. Lett. 47, 1–7 (2015)

    Article  MathSciNet  Google Scholar 

  16. Zhai, C., Ren, J.: A coupled system of fractional differential equations on the half-line. Bound. Value Probl. Paper No. 117, 22 (2019)

    Google Scholar 

  17. Liu, Y.: Existence and uniqueness of solutions for a class of initial value problems of fractional differential systems on half lines. Bull. Sci. Math. 137, 1048–1071 (2013)

    Article  MathSciNet  Google Scholar 

  18. Wang, G., Pei, K., Agarwal, R.P., Zhang, L., Ahmad, B.: Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 343, 230–239 (2018)

    Article  MathSciNet  Google Scholar 

  19. Thiramanus, P., Ntouyas, S.K., Tariboon, J.: Positive solutions for Hadamard fractional differential equations on infinite domain. Adv. Differ. Equ. 83, 18 (2016)

    MathSciNet  Google Scholar 

  20. Pei, K., Wang, G., Sun, Y.: Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain. Appl. Math. Comput. 312, 158–168 (2017)

    MathSciNet  Google Scholar 

  21. Zhang, W., Ni, J.: New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval. Appl. Math. Lett. 118, 107165, 10 (2021)

    Article  MathSciNet  Google Scholar 

  22. Cerdik, T.S., Deren, F.Y.: New results for higher-order Hadamard-type fractional differential equations on the half-line. Math. Meth. Appl. Sci. (2021). https://doi.org/10.1002/mma.7926

    Article  Google Scholar 

  23. Hammad, H.A., Zayed, M.: Solving systems of coupled nonlinear Atangana–Baleanu-type fractional differential equations. Bound. Value Probl. 101, 29 (2022)

    MathSciNet  Google Scholar 

  24. Garra, R., Mainardi, F., Spada, G.: A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos Solitons Fractals 102, 333–338 (2017)

    Article  MathSciNet  Google Scholar 

  25. Saxena, R.K., Garra, R., Orsingher, E.: Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives. Integral Transf. Spec. Funct. 27, 30–42 (2016)

    Article  MathSciNet  Google Scholar 

  26. Garra, R., Orsingher, E., Polito, F.: A note on Hadamard fractional differential equations with varying coefficients and their applications in probability. Mathematics 6, 4 (2018). https://doi.org/10.3390/math6010004

    Article  Google Scholar 

  27. Garra, R., Giusti, A., Mainardi, F., Pagnini, G.: Fractional relaxation with time-varying coefficient. Fract. Calc. Appl. Anal. 17, 424–439 (2014)

    Article  MathSciNet  Google Scholar 

  28. Tarasov, V.E.: Entropy interpretation of Hadamard-type fractional operators: fractional cumulative entropy. Entropy 24, 1852 (2022). https://doi.org/10.3390/e24121852

    Article  MathSciNet  Google Scholar 

  29. Wang, T., Wang, G., Yang, X.-J.: On a Hadamard-type fractional turbulent flow model with deviating arguments in a porous medium. Nonlinear Anal. Model. Control 22, 765–784 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wang, G., Ren, X., Zhang, L., Ahmad, B.: Explicit iteration and unique positive solution for a Caputo–Hadamard fractional turbulent flow model. IEEE Access 7, 109833–109839 (2019)

    Article  Google Scholar 

  31. Liao, N.: On the logarithmic type boundary modulus of continuity for the Stefan problem: to the memory of Emmanuele DiBenedetto. Adv. Math. 408(part B), 108613, 53 (2022)

    MathSciNet  Google Scholar 

  32. Park, S.-H.: Blow-up for logarithmic viscoelastic equations with delay and acoustic boundary conditions. Adv. Nonlinear Anal. 12, 20220310, 14 (2023)

    MathSciNet  Google Scholar 

  33. Leggett, R.W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28, 673–688 (1979)

    Article  MathSciNet  Google Scholar 

  34. Bai, Z., Ge, B.: Existence of three positive solutions for some second-order boundary value problems. Comput. Math. Appl. 48, 699–707 (2014)

    Article  MathSciNet  Google Scholar 

  35. Rodríguez-López, J.: A fixed point index approach to Krasnosel’skiĭ-Precup fixed point theorem in cones and applications. Nonlinear Anal. 226, 113138 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their valuable comments on their work that led to the improvement of the original manuscript.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

N.N. and B.A. prepared the main manuscript text. The authors reviewed the manuscript.

Corresponding author

Correspondence to Nemat Nyamoradi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyamoradi, N., Ahmad, B. Hadamard Fractional Differential Equations on an Unbounded Domain with Integro-initial Conditions. Qual. Theory Dyn. Syst. 23, 183 (2024). https://doi.org/10.1007/s12346-024-01044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01044-6

Keywords

Mathematics Subject Classification

Navigation