Skip to main content
Log in

The analytical study of soliton dynamics in fractional coupled Higgs system using the generalized Khater method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study introduces the generalized Khater Method (gKM) as a tool for investigating the existence and dynamics of soliton solutions within the realm of the Fractional Coupled Higgs System (FCHS) with conformable fractional derivatives. The methodology involves obtaining Nonlinear Ordinary Differential Equations (NODEs) from FCHS via a fractional complex transformation. The reduced NODEs are further used to uncover various families of soliton solutions, elucidating their intricate interrelationships and dynamics. Using some 3D graphics, we visually depict the behavior of some soliton solutions, including shock, lump-type shock, periodic, multiple periodic, rogue, and kink solitons. These findings contribute to a better understanding of the dynamics inherent in the FCHS and have potential applications in domains dealing with nonlinear fractional partial differential equations. Arguably, the study also highlights the importance of incorporating the conformable fractional derivative into the FCHS to provide it with more degrees of freedom, which allows for a deeper exploration of its behaviors and could have significant implications for particle physics, particularly for phenomena such as mass origin and electroweak violation of symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available upon reasonable request.

References

  • Ala, V.: New exact solutions of space-time fractional Schrödinger–Hirota equation. Bull. Karaganda Univ. Math. Ser. 107(3), 17–24 (2022)

    Google Scholar 

  • Ala, V., Rakhimzhanov, B.: Exact solutions of beta-fractional Fokas–Lenells equation via sine–cosine method. Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 16(2), 5–13 (2023)

    Google Scholar 

  • Ara, A., Khan, N.A., Razzaq, O.A., Hameed, T., Raja, M.A.Z.: Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling. Adv. Differ. Equ. 2018(1), 1–13 (2018)

    MathSciNet  Google Scholar 

  • Arefin, M.A., Sadiya, U., Inc, M., Uddin, M.H.: Adequate soliton solutions to the space-time fractional telegraph equation and modified third-order KdV equation through a reliable technique. Opt. Quant. Electron. 54(5), 309 (2022a)

    Google Scholar 

  • Arefin, M.A., Saeed, M.A., Akbar, M.A., Uddin, M.H.: Analytical behavior of weakly dispersive surface and internal waves in the ocean. J. Ocean Eng. Sci. 7(4), 305–312 (2022b)

    Google Scholar 

  • Arefin, M.A., Khatun, M.A., Islam, M.S., Akbar, M.A., Uddin, M.H.: Explicit soliton solutions to the fractional order nonlinear models through the Atangana beta derivative. Int. J. Theor. Phys. 62(6), 134 (2023)

    MathSciNet  Google Scholar 

  • Aslefallah, M., Shivanian, E.: Nonlinear fractional integro-differential reaction–diffusion equation via radial basis functions. Eur. Phys. J. Plus 130, 1–9 (2015)

    Google Scholar 

  • Aslefallah, M., Abbasbandy, S., Shivanian, E.: Fractional cable problem in the frame of meshless singular boundary method. Eng. Anal. Bound. Elem. 108, 124–132 (2019a)

    MathSciNet  Google Scholar 

  • Aslefallah, M., Abbasbandy, S., Shivanian, E.: Numerical solution of a modified anomalous diffusion equation with nonlinear source term through meshless singular boundary method. Eng. Anal. Bound. Elem. 107, 198–207 (2019b)

    MathSciNet  Google Scholar 

  • Atallah, S.A.: A Finite Element Method for Time Fractional Partial Differential Equations, University of Chester, United Kingdom, (2011)

  • Atas, S.S., Ali, K.K., Sulaiman, T.A., Bulut, H.: Invariant optical soliton solutions to the coupled-Higgs equation. Opt. Quant. Electron. 54(11), 754 (2022)

    Google Scholar 

  • Bibi, S., Mohyud-Din, S.T., Khan, U., Ahmed, N.: Khater method for nonlinear Sharma Tasso–Olever (STO) equation of fractional order. Res. Phys. 7, 4440–4450 (2017)

    Google Scholar 

  • Bilal, M., Iqbal, J., Ali, R., Awwad, F.A., Ismail, E.A.: Exploring families of solitary wave solutions for the fractional coupled Higgs system using modified extended direct algebraic method. Fract. Fract. 7(9), 653 (2023)

    Google Scholar 

  • Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 130, 107205 (2023a)

    MathSciNet  Google Scholar 

  • Chen, S.J., Lü, X., Yin, Y.H.: Dynamic behaviors of the lump solutions and mixed solutions to a (2+ 1)-dimensional nonlinear model. Commun. Theor. Phys. 75(5), 055005 (2023b)

    ADS  MathSciNet  Google Scholar 

  • Duan, J.S., Rach, R., Baleanu, D., Wazwaz, A.M.: A review of the Adomian decomposition method and its applications to fractional differential equations. Commun. Fract. Calc. 3(2), 73–99 (2012)

    Google Scholar 

  • Ford, N.J., Xiao, J., Yan, Y.: A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 14, 454–474 (2011)

    MathSciNet  Google Scholar 

  • Gao, D., Lü, X., Peng, M.S.: Study on the (2+ 1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation. Phys. Scr. 98(9), 095225 (2023)

    ADS  Google Scholar 

  • He, J.H., Elagan, S.K., Li, Z.B.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376(4), 257–259 (2012)

    ADS  MathSciNet  Google Scholar 

  • Jabbari, A., Kheiri, H., Bekir, A.: Exact solutions of the coupled Higgs equation and the Maccari system using He’s semi-inverse method and \(\dfrac{G^{\prime }}{G}\)-expansion method. Comput. Math. Appl. 62(5), 2177–2186 (2011)

    MathSciNet  Google Scholar 

  • Jafari, H., Tajadodi, H., Baleanu, D., Al-Zahrani, A.A., Alhamed, Y.A., Zahid, A.H.: Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation. Cent. Eur. J. Phys. 11, 1482–1486 (2013)

    Google Scholar 

  • Khan, H., Baleanu, D., Kumam, P., Al-Zaidy, J.F.: Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method. IEEE Access 7, 107523–107532 (2019)

    Google Scholar 

  • Khan, H., Shah, R., Gómez-Aguilar, J.F., Baleanu, D., Kumam, P.: Travelling waves solution for fractional-order biological population model. Math. Model. Nat. Phenom. 16, 32 (2021)

    MathSciNet  Google Scholar 

  • Khater, M.M.A.., Seadawy, Aly R., Dianchen, Lu.: Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti–Leon–Pempinelli equations system and Time-fractional Cahn–Allen equation. Res. Phys. 7, 2325–2333 (2017)

    Google Scholar 

  • Khatun, M.A., Arefin, M.A., Uddin, M.H., İnç, M., Akbar, M.A.: An analytical approach to the solution of fractional-coupled modified equal width and fractional-coupled Burgers equations. J. Ocean Eng. Sci. (2022a)

  • Khatun, M.A., Arefin, M.A., Islam, M.Z., Akbar, M.A., Uddin, M.H.: New dynamical soliton propagation of fractional type couple modified equal-width and Boussinesq equations. Alex. Eng. J. 61(12), 9949–9963 (2022b)

    Google Scholar 

  • Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103, 947–977 (2021)

    Google Scholar 

  • Mu, G., Qin, Z.: Rogue waves for the coupled Schrôdinger Boussinesq equation and the coupled Higgs equation. J. Phys. Soc. Jpn. 81(8), 084001 (2012)

    ADS  Google Scholar 

  • Raslan, K.R., Ali, K.K., Shallal, M.A.: The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations. Chaos, Solitons Fractals 103, 404–409 (2017)

    ADS  MathSciNet  Google Scholar 

  • Rezazadeh, H., Mirhosseini-Alizamini, S.M., Neirameh, A., Souleymanou, A., Korkmaz, A., Bekir, A.: Fractional Sineâ Gordon equation approach to the coupled higgs system defined in time-fractional form. Iran. J. Sci. Technol. Trans. A Sci. 43, 2965–2973 (2019)

    MathSciNet  Google Scholar 

  • Sarikaya, M.Z., Budak, H., Usta, H.: On generalized the conformable fractional calculus. TWMS J. Appl. Eng. Math. 9(4), 792–799 (2019)

    Google Scholar 

  • Seadawy, A.R., Lu, D., Khater, M.M.: Bifurcations of traveling wave solutions for Dodd–Bullough–Mikhailov equation and coupled Higgs equation and their applications. Chin. J. Phys. 55(4), 1310–1318 (2017)

    Google Scholar 

  • Shivanian, E., Aslefallah, M.: Stability and convergence of spectral radial point interpolation method locally applied on two dimensional pseudoparabolic equation. Numer. Methods Partial Differ. Equ. 33(3), 724–741 (2017)

    MathSciNet  Google Scholar 

  • Singh, B.K.: Fractional reduced differential transform method for numerical computation of a system of linear and nonlinear fractional partial differential equations. Int. J. Open Probl. Comput. Sci. Math. 238(4004), 1–19 (2016)

    Google Scholar 

  • Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    ADS  Google Scholar 

  • Tarasov, V.E.: On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 30(1–3), 1–4 (2016)

    MathSciNet  Google Scholar 

  • Tasbozan, O., Çenesiz, Y., Kurt, A.: New solutions for conformable fractional Boussinesq and combined KdV–mKdV equations using Jacobi elliptic function expansion method. Eur. Phys. J. Plus 131, 1–14 (2016)

    Google Scholar 

  • Tian, Y., Liu, J.: A modified exp-function method for fractional partial differential equations. Therm. Sci. 25(2 Part B), 1237–1241 (2021)

    Google Scholar 

  • Wu, G.C., Baleanu, D.: Variational iteration method for the Burgers’ flow with fractional derivatives-new Lagrange multipliers. Appl. Math. Model. 37(9), 6183–6190 (2013)

    MathSciNet  Google Scholar 

  • Xu, H., Liao, S.J., You, X.C.: Analysis of nonlinear fractional partial differential equations with the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1152–1156 (2009)

    ADS  MathSciNet  Google Scholar 

  • Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+ 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108(4), 4181–4194 (2022)

    Google Scholar 

  • Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Study of the soliton propagation of the fractional nonlinear type evolution equation through a novel technique. PLoS ONE 18(5), e0285178 (2023)

    Google Scholar 

  • Zayed, E.M., Amer, Y.A., Shohib, R.M.: The fractional complex transformation for nonlinear fractional partial differential equations in the mathematical physics. J. Assoc. Arab Univ. Basic Appl. Sci. 19, 59–69 (2016)

    Google Scholar 

  • Zhang, K., Alshehry, A.S., Aljahdaly, N.H., Shah, R., Shah, N.A., Ali, M.R.: Efficient computational approaches for fractional-order Degasperis-Procesi and Camassaholm equations. Res. Phys. 50, 106549 (2023)

    Google Scholar 

  • Zheng, B.: \(\dfrac{G^{\prime }}{G}\)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58(5), 623 (2012)

Download references

Acknowledgements

The authors express their gratitude to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Research Groups Project under Grant No. RGP. 1/184/44.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RA. Data curation: ZZ. Formal analysis: RA and MMA. Validation: ZZ and HA. Writing-original draft: RA and ZZ. Writing-review editing: HA.

Corresponding author

Correspondence to Hijaz Ahmad.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, R., Zhang, Z., Ahmad, H. et al. The analytical study of soliton dynamics in fractional coupled Higgs system using the generalized Khater method. Opt Quant Electron 56, 1067 (2024). https://doi.org/10.1007/s11082-024-06924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06924-4

Keywords

Mathematics Subject Classification

Navigation