Skip to main content

Advertisement

Log in

Approaches for targeted proteomics and its potential applications in neuroscience

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

An extensive guide on practicable and significant quantitative proteomic approaches in neuroscience research is important not only because of the existing overwhelming limitations but also for gaining valuable understanding into brain function and deciphering proteomics from the workbench to the bedside. Early methodologies to understand the functioning of biological systems are now improving with high-throughput technologies, which allow analysis of various samples concurrently, or of thousand of analytes in a particular sample. Quantitative proteomic approaches include both gel-based and non-gel-based methods that can be further divided into different labelling approaches. This review will emphasize the role of existing technologies, their advantages and disadvantages, as well as their applications in neuroscience. This review will also discuss advanced approaches for targeted proteomics using isotope-coded affinity tag (ICAT) coupled with laser capture microdissection (LCM) followed by liquid chromatography tandem mass spectrometric (LC-MS/MS) analysis. This technology can further be extended to single cell proteomics in other areas of biological sciences and can be combined with other ‘omics’ approaches to reveal the mechanism of a cellular alterations. This approach may lead to further investigation in basic biology, disease analysis and surveillance, as well as drug discovery. Although numerous challenges still exist, we are confident that this approach will increase the understanding of pathological mechanisms involved in neuroendocrinology, neuropsychiatric and neurodegenerative disorders by delivering protein biomarker signatures for brain dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

2-DE:

two-dimensional gel electrophoresis

2D-DIGE:

two-dimensional difference gel electrophoresis

AA:

avidin affinity

AD:

Alzheimer’s disease

CE:

cation exchange

CID:

collision-induced dissociation

CSF:

cerebrospinal fluid

Cy3:

cyanin 3

Cy5:

cyanin 5

ICAT:

isotope-coded affinity tag

iTRAQ:

isobaric tags for relative and absolute quantification

IEF:

isoelectric focusing

LC:

liquid chromatography

LCM:

laser capture microdissection

MALDI-TOF-MS:

matrix-assisted laser desorption ionization time-of-flight mass spectrometry

MS:

mass spectrometry

MS/MS:

tandem mass spectrometry

PBS:

phosphate buffer saline

PD:

Parkinson’s disease

PTM:

post-translational modification

Q-TOF:

quadrupole time-of-flight

SILAC:

stable isotope labelling with amino acids in cell culture

SILAM:

stable isotope labelling of mammals.

References

  • Abdi F, Quinn JF, Jankovic J, McIntosh M, Leverenz JB, Peskind E, Nixon R, Nutt J, et al. 2006 Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimers Dis. 9 293–348

    CAS  PubMed  Google Scholar 

  • Akude E, Zherebitskaya E, Chowdhury SK, Smith DR, Dobrowsky RT and Fernyhough P 2011 Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes 60 288–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Albaum SP, Neuweger H, Fränzel B, Lange S, Mertens D, Trötschel C, Wolters D, Kalinowski J, et al. 2009 Qupe–a rich internet application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments. Bioinformatics 25 3128–3134

    Article  CAS  PubMed  Google Scholar 

  • Asano T and Nishiuchi T 2014 Quantitative phosphoproteomic analysis using iTRAQ method. Methods Mol. Biol. 1171 251–258

    Article  PubMed  Google Scholar 

  • Badhwar A, Stanimirovic DB, Hamel E and Haqqani AS 2014 The proteome of mouse cerebral arteries. J. Cereb. Blood Flow Metab. 34 1033–1046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bajrami B, Farrokhi V, Zhang M, Shehu A and Yao X 2012 Back to deuterium: utility of 2H-labeled peptides for targeted quantitative proteomics. Int. J. Mass Spectrom. 312 17–23

    Article  CAS  Google Scholar 

  • Banerjee HN, Mahaffey K, Riddick E, Banerjee A, Bhowmik N and Patra M 2012 Search for a diagnostic/prognostic biomarker for the brain cancer glioblastoma multiforme by 2D-DIGE-MS technique. Mol. Cell. Biochem. 367 59–63

    Article  CAS  PubMed  Google Scholar 

  • Bécamel C, Alonso G, Galéotti N, Demey E, Jouin P, Ullmer C, Dumuis A, Bockaert J, et al. 2002 Synaptic multiprotein complexes associated with 5-HT(2C) receptors: a proteomic approach. EMBO J. 21 2332–2342

    Article  PubMed Central  PubMed  Google Scholar 

  • Bécamel C, Gavarini S, Chanrion B, Alonso G, Galéotti N, Dumuis A, Bockaert J and Marin P 2004 The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J. Biol. Chem. 279 20257–20266

    Article  PubMed  CAS  Google Scholar 

  • Bernard R, Kerman IA, Meng F, Evans SJ, Amrein I, Jones EG, Bunney WE, Akil H, et al. 2009 Gene expression profiling of neurochemically defined regions of the human brain by in situ hybridization-guided laser capture microdissection. J. Neurosci. Methods. 178 46–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bidarimath M, Edwards AK and Tayade C 2015 Laser capture microdissection for gene expression analysis. Methods Mol. Biol. 1219 115–137

    Article  PubMed  CAS  Google Scholar 

  • Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S and Liotta LA 1997 Laser capture microdissection: molecular analysis of tissue. Science 278 1481–1483

    Article  CAS  PubMed  Google Scholar 

  • Braakman RB, Tilanus-Linthorst MM, Liu NQ, Stingl C, Dekker LJ, Luider TM, Martens JW, Foekens JA, et al. 2012 Optimized nLC-MS workflow for laser capture microdissected breast cancer tissue. J. Proteomics 75 2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Buckanovich RJ, Sasaroli D, O’brien-Jenkins A, Botbyl J, Conejo-Garcia JR, Benencia F, Liotta LA, Gimotty PA, et al. 2006 Use of immuno-LCM to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol. Ther. 5 635–642

    Article  CAS  PubMed  Google Scholar 

  • Buckingham S 2003 The major world of microRNAs. Horizon symposia Understanding the RNAissance 1–3

  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, et al. 2002 Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxyterminal hydrolase L-1. Free Radic. Biol. Med. 33 562–571

    Article  CAS  PubMed  Google Scholar 

  • Chang RY, Etheridge N, Dodd PR and Nouwens AS 2014 Targeted quantitative analysis of synaptic proteins in Alzheimer's disease brain. Neurochem. Int. 75 66–75

    Article  CAS  PubMed  Google Scholar 

  • Chen CH 2008 Review of a current role of mass spectrometry for proteome research. Anal. Chim. Acta 624 16–36

    Article  CAS  PubMed  Google Scholar 

  • Chen G and Pramanik BN 2009 Application of LC/MS to proteomics studies: current status and future prospects. Drug Discov. Today 14 465–471

    Article  CAS  PubMed  Google Scholar 

  • Chen QR, Song YK, Yu LR, Wei JS, Chung JY, Hewitt SM, Veenstra TD and Khan J 2010 Global genomic and proteomic analysis identifies biological pathways related to high-risk neuroblastoma. J. Proteome Res. 9 373–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM, Xu P, Wijayawardana SR, et al. 2006 Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell. Proteomics 5 1158–1170

    Article  CAS  PubMed  Google Scholar 

  • Chernushevich IV, Loboda AV and Thomson BA 2001 An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 36 849–865

    Article  CAS  PubMed  Google Scholar 

  • Chevalier F 2010 Highlights on the capacities of “gel-based” proteomics. Proteome Sci. 8 23

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chiang MC, Juo CG, Chang HH, Chen HM, Yi EC and Chern Y 2007 Systematic uncovering of multiple pathways underlying the pathology of Huntington disease by an acid-cleavable isotope-coded affinity tag approach. Mol. Cell. Proteomics. 6 781–797

    Article  CAS  PubMed  Google Scholar 

  • Clauser KR, Hall SC, Smith DM, Webb JW, Andrews LE, Tran HM, Epstein LB and Burlingame AL 1995 Rapid mass spectrometric peptide sequencing and mass matching for characterization of human melanoma proteins isolated by two-dimensional PAGE. Proc. Natl. Acad. Sci. USA 92 5072–5076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colangelo CM and Williams KR 2006 Isotope-coded affinity tags for protein quantification. Methods Mol. Biol. 328 151–158

    CAS  PubMed  Google Scholar 

  • Collet B, Guitton N, Saїkali S, Avril T, Pineau C, Hamlat A, Mosser J and Quillien V 2011 Differential analysis of glioblastoma multiforme proteome by a 2D-DIGE approach. Proteome Sci. 9 16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Counotte DS, Li KW, Wortel J, Gouwenberg Y, Van Der Schors RC, Smit AB and Spijker S 2010 Changes in molecular composition of rat medial prefrontal cortex synapses during adolescent development. Eur. J. Neurosci. 32 1452–1460

    Article  PubMed  Google Scholar 

  • Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, Mintun MA, Peskind ER, et al. 2010 YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol. Psychiatry 68 903–912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Datta A, Qian J, Chong R, Kalaria RN, Francis P, Lai MK, Chen CP and Sze SK 2014 Novel pathophysiological markers are revealed by iTRAQ-based quantitative clinical proteomics approach in vascular dementia. J. Proteomics 99 54–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Decarlo K, Emley A, Dadzie OE and Mahalingam M 2011 Laser capture microdissection: methods and application. Methods Mol. Biol. 755 1–15

    Article  CAS  PubMed  Google Scholar 

  • Dhingra V, Gupta M, Andacht T and Fu ZF 2005 New frontiers in proteomics research: a perspective. Int. J. Pharm. 299 1–18

    Article  CAS  PubMed  Google Scholar 

  • Ditzen C, Jastorff AM, Kessler MS, Bunck M, Teplytska L, Erhardt A, Krömer SA, Varadarajulu J, et al. 2006 Protein biomarkers in a mouse model of extremes in trait anxiety. Mol. Cell. Proteomics 5 1914–1920

    Article  CAS  PubMed  Google Scholar 

  • Domazet B, Maclennan GT, Lopez-Beltran A, Montironi R and Cheng L 2008 Laser capture microdissection in the genomic and proteomic era: targeting the genetic basis of cancer. Int. J. Clin. Exp. Pathol. 1 475–488

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edgar PF, Douglas JE, Knight C, Cooper GJ, Faull RL and Kydd R 1999 Proteome map of the human hippocampus. Hippocampus 9 644–650

    Article  CAS  PubMed  Google Scholar 

  • Elliott K, Hill DS, Lambert C, Burroughes TR and Gill P 2003 Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides. Forensic Sci. Int. 137 28–36

    Article  CAS  PubMed  Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA and Liotta LA 1996 Laser capture microdissection. Science 274 998–1001

    Article  CAS  PubMed  Google Scholar 

  • Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF 3rd, et al. 2006 Laser-capture microdissection. Nat. Protoc. 1 586–603

    Article  CAS  PubMed  Google Scholar 

  • Espina V, Heiby M, Pierobon M and Liotta LA 2007 Laser capture micro-dissection technology. Expert. Rev. Mol. Diagn. 7 647–57

    Article  CAS  PubMed  Google Scholar 

  • Esposito G 2007 Complementary techniques: laser capture microdissection–increasing specificity of gene expression profiling of cancer specimens. Adv. Exp. Med. Biol. 593 54–65

    Article  PubMed  Google Scholar 

  • Fend F and Raffeld M 2000 Laser capture microdissection in pathology. J. Clin. Pathol. 53 666–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fend F, Emmert-Buck MR, Chuaqui R, Cole K, Lee J, Liotta LA and Raffeld M 1999 Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am. J. Pathol. 154 61–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferret-Bernard S, Castro-Borges W, Dowle AA, Sanin DE, Cook PC, Turner JD, MacDonald AS, Thomas JR, et al. 2012 Plasma membrane proteomes of differentially matured dendritic cells identified by LC-MS/MS combined with iTRAQ labelling. J. Proteomics 75 938–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Filiou MD, Turck CW and Martins-de-Souza D 2011 Quantitative proteomics for investigating psychiatric disorders. Proteomics Clin. Appl. 5 38–49

    Article  CAS  PubMed  Google Scholar 

  • Föcking M, Dicker P, English JA, Schubert KO, Dunn MJ and Cotter DR 2011 Common proteomic changes in the hippocampus in schizophrenia and biopolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch. Gen. Psychiatry. 68 477–488

    Article  PubMed  Google Scholar 

  • Fountoulakis M, Juranville JF, Dierssen M and Lubec G 2002 Proteomic analysis of the fetal brain. Proteomics 2 1547–1576

    Article  CAS  PubMed  Google Scholar 

  • Frank E, Kessler MS, Filiou MD, Zhang Y, Maccarrone G, Reckow S, Bunck M, Heumann H, et al. 2009 Stable isotope metabolic labeling with a novel N-enriched bacteria diet for improved proteomic analyses of mouse models for psychopathologies. PLoS One 4 e7821

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gafken PR and Lampe PD 2006 Methodologies for characterizing phosphoproteins by mass spectrometry. Cell Commun. Adhes. 13 249–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • García-Santamarina S, Boronat S, Domènech A, Ayté J, Molina H and Hidalgo E 2014 Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat. Protoc. 9 1131–1145

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JW, Ahram M, Best CJ, Swalwell JI, Krizman DB, Petricoin EF, Liotta LA and Emmert-Buck MR 2001 The role of tissue microdissection in cancer research. Cancer J. 7 32–39

    CAS  PubMed  Google Scholar 

  • Guerrera IC and Kleiner O 2005 Application of mass spectrometry in proteomics. Biosci. Rep. 25 71–93

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP and Aebersold R 2000 Mass spectrometry and proteomics. Curr. Opin. Chem. Biol. 4 489–494

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH and Aebersold R 1999 Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17 994–999

    Article  CAS  PubMed  Google Scholar 

  • Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA and Burlingame AL 2003 Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol. Cell. Proteomics 2 299–314

    CAS  PubMed  Google Scholar 

  • Haqqani AS, Nesic M, Preston E, Baumann E, Kelly J and Stanimirovic D 2005 Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. FASEB J. 19 1809–1821

    Article  CAS  PubMed  Google Scholar 

  • Haqqani AS, Kelly JF and Stanimirovic DB 2008 Quantitative protein profiling by mass spectrometry using isotope-coded affinity tags. Methods Mol. Biol. 439 225–240

    Article  CAS  PubMed  Google Scholar 

  • Hartmann S, Bergmann M, Bohle RM, Weidner W and Steger K 2006 Genetic imprinting during impaired spermatogenesis. Mol. Hum. Reprod. 12 407–411

    Article  CAS  PubMed  Google Scholar 

  • Haynes PA and Yates JR 3rd 2000 Proteome profiling-pitfalls and progress. Yeast 17 81–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He J, Zhu J, Liu Y, Wu J, Nie S, Heth JA, Muraszko KM, Fan X, et al. 2013 Immunohistochemical staining, laser capture microdissection, and filter-aided sample preparation-assisted proteomic analysis of target cell populations within tissue samples. Electrophoresis. 34 1627–1636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C and Watanabe C 1993 Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90 5011–5015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirosawa M, Hoshida M, Ishikawa M and Toya T 1993 MASCOT: multiple alignment system for protein sequence based on three-way dynamic programming. Comput. Appl. Biosci. 9 161–167

    CAS  PubMed  Google Scholar 

  • Hölper S, Ruhs A and Krüger M 2014 Stable isotope labeling for proteomic analysis of tissues in mouse. Methods Mol. Bio. 1188 95–106

    Article  Google Scholar 

  • Jagatheesh K, Pavankumar P, Elangovan N, Padmavathi P, Swathi D and Tryphena M 2011 Applications of proteomics in animal model. Int. J. Pharma. 1 1–14

    CAS  Google Scholar 

  • Jin J, Meredith GE, Chen L, Zhou Y, Xu J, Shie FS, Lockhart P and Zhang J 2005 Quantitative proteomic analysis of mitochondrial proteins: relevance to Lewy body formation and Parkinson’s disease. Brain Res. Mol. Brain Res. 134 119–138

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Davis J, Zhu D, Kashima DT, Leroueil M, Pan C, Montine KS and Zhang J 2007 Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells. BMC Neurosci. 8 67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF and Yolken RH 2000 Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol. Psychiatry 5 142–149

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Yun N, Lee YM, Jeong JY, Baek JY, Song HY, Ju C, Youdim MB, et al. 2013 Gel-based protease proteomics for identifying the novel calpain substrates in dopaminergic neuronal cell. J. Biol. Chem. 288 36717–36732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinnecom K and Pachter JS 2005 Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection. Brain Res. Brain Res. Protoc. 16 1–9

    Article  CAS  PubMed  Google Scholar 

  • Kitahashi T, Ogawa S and Parhar IS 2009 Cloning and expression of kiss2 in the zebrafish and medaka. Endocrinology. 150 821–831

    Article  CAS  PubMed  Google Scholar 

  • Klitgaard K, Mølbak L, Jensen TK, Lindboe CF and Boye M 2005 Laser capture microdissection of bacterial cells targeted by fluorescence in situ hybridization. Biotechniques 39 864–868

    Article  CAS  PubMed  Google Scholar 

  • Kolble K 2000 The LEICA microdissection system: design and applications. J. Mol. Med. (Berl.). 78 B24–B25

    CAS  Google Scholar 

  • Kolla V, Jeno P, Moes S and Tercanli S 2010 Choolani M and Hahn S Quantitative proteomics analysis of maternal plasma in Down syndrome pregnancies using isobaric tagging reagent (iTRAQ). J. Biomed. Biotechnol. 952047

  • Korolainen MA, Goldsteins G, Alafuzoff I, Koistinaho J and Pirttila T 2002 Proteomic analysis of protein oxidation in Alzheimer's disease brain. Electrophoresis 23 3428–3433

    Article  CAS  PubMed  Google Scholar 

  • Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, et al. 2008 SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134 353–364

    Article  PubMed  CAS  Google Scholar 

  • Langen H, Berndt P, Roder D, Cairns N, Lubec G and Fountoulakis M 1999 Two-dimensional map of human brain proteins. Electrophoresis 20 907–916

    Article  CAS  PubMed  Google Scholar 

  • Lanucara F and Eyers CE 2011 Mass spectrometric-based quantitative proteomics using SILAC. Methods Enzymol. 500 133–150

    Article  CAS  PubMed  Google Scholar 

  • Li J, Steen H and Gygi SP 2003 Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response. Mol. Cell. Proteomics 2 1198–1204

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Xu Z, Xu X, Zhao X, Huag C and Wei Y 2012 Quantitative proteomics for cancer biomarker discovery. Comb. Chem. High Throughput Screen 15 221–231

  • Liao L, McClatchy DB, Park SK, Xu T, Lu B and Yates JR 3rd 2008a Quantitative analysis of brain nuclear phosphoproteins identifies developmentally regulated phosphorylation events. J. Proteome Res. 7 4743–4755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liao L, Park SK, Xu T, Vanderklish P and Yates JR 3rd 2008b Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice. Proc. Natl. Acad. Sci. USA 105 15281–15286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Licker V, Côte M, Lobrinus JA, Rodrigo N, Kövari E, Hochstrasser DF, Turck N, Sanchez JC, et al. 2012 Proteomic profiling of the substantia nigra demonstrates CNDP2 overexpression in Parkinson's disease. J. Proteomics 75 4656–4667

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Shi M, Hong Z, Zhang J, Bradner J, Quinn T, Beyer RP, Mcgeer PL, et al. 2010 Identification of ciliary neurotrophic factor receptor alpha as a mediator of neurotoxicity induced by alpha-synuclein. Proteomics 10 2138–2150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lund R, Leth-Larsen R, Jensen ON and Ditzel HJ 2009 Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. J. Proteome Res. 8 3078–3090

    Article  CAS  PubMed  Google Scholar 

  • Magdeldin S, Enany S, Yoshida Y, Xu B, Zhang Y, Zureena Z, Lokamani I, Yaoita E, et al. 2014 Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin. Proteomics 11 16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Magharious M, D’Onofrio PM, Hollander A, Zhu P, Chen J and Koeberle PD 2011 Quantitative iTRAQ analysis of retinal ganglion cell degeneration after optic nerve crush. J. Proteome Res. 10 3344–3362

    Article  CAS  PubMed  Google Scholar 

  • Maitra A and Gazdar AF 2001 Tissue micro-dissection and processing. Cancer Treat. Res. 106 63–84

    Article  CAS  PubMed  Google Scholar 

  • Manavalan A, Feng L, Sze SK, Hu JM and Heese K 2012 New insights into the brain protein metabolism of Gastrodia elata-treated rats by quantitative proteomics. J. Proteomics. 75 2468–2479

    Article  CAS  PubMed  Google Scholar 

  • Mann M and Wilm M 1994 Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66 4390–4399

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Brenneman R, Becker KG, Gucek M, Cole RN and Maudsley S 2008 iTRAQ analysis of complex proteome alterations in 3xTgAD Alzheimer’s mice: understanding the interface between physiology and disease. PLoS One. 3 e2750

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martins-De-Souza D, Dias-Neto E, Schmitt A, Falkai P, Gormanns P, Maccarrone G, Turck CW and Gattaz WF 2010 Proteome analysis of schizophrenia brain tissue. World J. Biol. Psychiatry. 11 110–120

    Article  PubMed  Google Scholar 

  • McClatchy DB and Yates JR 3rd 2014 Stable isotope labeling in mammals (SILAM). Methods Mol. Biol. 1156 133–146

    Article  CAS  PubMed  Google Scholar 

  • McClatchy DB, Liao L, Park SK, Venable JD and Yates JR 2007 Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res. 17 1378–1388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClatchy DB, Liao L, Park SK, Xu T, Lu B and Yates Iii JR 2011 Differential proteomic analysis of mammalian tissues using SILAM. PLoS One 6 e16039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClatchy DB, Liao L, Lee JH, Park SK and Yates JR 3rd 2012 Dynamics of subcellular proteomes during brain development. J. Proteome Res. 11 2467–2479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGeer EG and McGeer PL 2010 Neuroinflammation in Alzheimer's disease and mild cognitive impairment: a field in its infancy. J. Alzheimers Dis. 19 355–361

    PubMed  Google Scholar 

  • Micke P, Ostman A, Lundeberg J and Ponten F 2005 Laser-assisted cell microdissection using the PALM system. Methods Mol. Biol. 293 151–166

    CAS  PubMed  Google Scholar 

  • Monteoliva L and Albar JP 2004 Differential proteomics: an overview of gel and non-gel based approaches. Brief Funct. Genomic Proteomic 3 220–239

    Article  CAS  PubMed  Google Scholar 

  • Montine TJ, Woltjer RL, Pan C, Montine KS and Zhang J 2006 Liquid chromatography with tandem mass spectrometry-based proteomic discovery in aging and Alzheimer’s disease. NeuroRx 3 336–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moron JA, Abul-Husn NS, Rozenfeld R, Dolios G, Wang R and Devi LA 2007 Morphine administration alters the profile of hippocampal postsynaptic density-associated proteins: a proteomics study focusing on endocytic proteins. Mol. Cell. Proteomics 6 29–42

    Article  CAS  PubMed  Google Scholar 

  • Morris CM and Wilson KE 2004 High throughput approaches in Neuroscience. Int. J. Dev. Neurosci. 22 515–522

    Article  CAS  PubMed  Google Scholar 

  • Moulédous L, Hunt S, Harcourt R, Harry JL, Williams KL and Gutstein HB 2002 Lack of compatibility of histological staining methods with proteomic analysis of laser-capture microdissected brain samples. J. Biomol. Tech. 13 258–264

    PubMed Central  PubMed  Google Scholar 

  • Moulédous L, Hunt S, Harcourt R, Harry J, Williams KL and Gutstein HB 2003 Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3 610–615

    Article  PubMed  CAS  Google Scholar 

  • Mu J, Xie P, Yang ZS, Yang DL, Lv FJ, Luo TY and Li Y 2007 Neurogenesis and major depression: implications from proteomic analyses of hippocampal proteins in a rat depression model. Neurosci. Lett. 416 252–256

    Article  CAS  PubMed  Google Scholar 

  • Murakami H, Liotta L and Star RA 2000 IF-LCM: laser capture microdissection of immunofluorescently defined cells for mRNA analysis rapid communication. Kidney Int. 58 1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Murugesan N, Macdonald JA, Lu Q, Wu SL, Hancock WS and Pachter JS 2011 Analysis of mouse brain microvascular endothelium using laser capture microdissection coupled with proteomics. Methods Mol. Biol. 686 297–311

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Owa T, Sato T, Boucher B, Daniels S, Yamanaka H, Shinohara Y, Yokoi A, et al. 2003 Quantitative chemical proteomics for identifying candidate drug targets. Anal. Chem. 75 2159–2165

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Ng KW, Ramadasan PN, Nathan FM and Parhar IS 2012 Hebenular kiss1 neurons modulate the serotonergic system in the brain of zebrafish. Endocrinology 153 2398–2407

    Article  CAS  PubMed  Google Scholar 

  • Oguri T, Takahata I, Katsuta K, Nomura E, Hidaka M and Inagaki N 2002 Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis. Proteomics 2 666–672

    Article  CAS  PubMed  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M 2006 Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127 635–648

    Article  CAS  PubMed  Google Scholar 

  • Ong SE and Mann M 2007 Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol. Biol. 359 37–52

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A and Mann M 2002 Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics. 1 376–386

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Foster LJ and Mann M 2003 Mass-spectrometric-based approaches in quantitative proteomics. Methods 29 124–30

    Article  CAS  PubMed  Google Scholar 

  • Otte DM, Sommersberg B, Kudin A, Guerrero C, Albayram O, Filiou MD, Frisch P, Yilmaz O, et al. 2011 N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice. Neuropsychopharmacology 36 2233–2243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parhar IS 2005 GnRH and gpcr: laser-captured single cell gene profiling. Fish Physiol. Biochem. 31 153–156

    Article  CAS  PubMed  Google Scholar 

  • Parhar IS, Ogawa S and Sakuma Y 2004 Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology 145 3613–3618

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Sinha A and Singh MP 2007 Identification of differentially expressed proteins in striatum of maneb-and paraquat-induced Parkinson’s disease phenotype in mouse. Neurotoxicol. Teratol. 29 578–585

    Article  CAS  PubMed  Google Scholar 

  • Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, Wait R, Dunn MJ, et al. 2008 Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol. Psychiatry 13 1102–1117

    Article  CAS  PubMed  Google Scholar 

  • Phang YL, Soga T, Kitahashi T and Parhar IS 2012 Cloning and functional expression of novel cholesterol transporters ABCG1 and ABCG4 in gonadotropin-hormone neurons of the tilapia. Neuroscience 203 39–49

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Fernández A, Paradela A, Navajas R and Albar JP 2008 Generalized method for probability-based peptide and protein identification from tandem mass spectrometry data and sequence database searching. Mol. Cell. Proteomics 7 1748–1754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ranjit N, Jones MK, Stenzel DJ, Gasser RB and Loukas A 2006 A survey of the intestinal transcriptomes of the hookworms, Necator americanus and Ancylostoma caninum, using tissues isolated by laser microdissection microscopy. Int. J. Parasitol. 36 701–710

    Article  CAS  PubMed  Google Scholar 

  • Rauniyar N, McClatchy DB and Yates JR 3rd 2013 Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis. Methods 61 260–268

    Article  CAS  PubMed  Google Scholar 

  • Reissner KJ, Uys JD, Schwacke JH, Comte-Walters S, Rutherford-Bethard JL, Dunn TE, Blumer JB, Schey KL, et al. 2011 AKAP signaling in reinstated cocaine seeking revealed by iTRAQ proteomic analysis. J. Neurosci. 31 5648–5658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren F, Chen Y, Wang Y, Yan Y, Zhao J, Ding M, Zhang J, Jiang Y, et al. 2010 Comparative serum proteomic analysis of patients with acuteon-chronic liver failure: Alpha-1-acid glycoprotein maybe a candidate marker for prognosis of hepatitis B virus infection. J. Viral Hepat. 17 816–824

    Article  CAS  PubMed  Google Scholar 

  • Robinson RA, Lange MB, Sultana R, Galvan V, Fombonne J, Gorostiza O, Zhang J, Warrier G, et al. 2011 Differential expression and redox proteomics analyses of an Alzheimer disease transgenic mouse model: effects of the amyloid-beta peptide of amyloid precursor protein. Neuroscience 177 207–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B and Wiley HS 2008 Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 24 2894–2900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, et al. 2004 Multiplexed protein quantitation in Saccharomyces cerevisiae using aminereactive isobaric tagging reagents. Mol. Cell. Proteomics 3 1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Roth CL, McCormack AL, Lomniczi A, Mungenast AE and Ojeda SR 2006 Quantitative proteomics identifies a change in glial glutamate metabolism at the time of female puberty. Mol. Cell. Endocrinol. 254-255 51–59

    Article  CAS  PubMed  Google Scholar 

  • Rudrabhatla P, Grant P, Jaffe H, Strong MJ and Pant HC 2010 Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer’s disease by iTRAQ. FASEB J. 24 4396–4407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rupp C, Dolznig H, Puri C, Schweifer N, Sommergruber W, Kraut N, Rettig WJ, Kerjaschki D, et al. 2006 Laser capture microdissection of epithelial cancers guided by antibodies against fibroblast activation protein and endosialin. Diagn. Mol. Pathol. 15 35–42

    Article  CAS  PubMed  Google Scholar 

  • Ryu S, Gallis B, Goo YA, Shaffer SA, Radulovic D and Goodlett DR 2008 Comparison of a label-free quantitative proteomic method based on peptide ion current area to the isotope coded affinity tag method. Cancer Inform. 6 243–255

    PubMed Central  PubMed  Google Scholar 

  • Schermelleh L, Thalhammer S, Heckl W, Pösl H, Cremer T, Schütze K and Cremer M 1999 Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 27 362–367

    CAS  PubMed  Google Scholar 

  • Schmidt F, Donahoe S, Hagens K, Mattow J, Schaible UE, Kaufmann SH, Aebersold R and Jungblut PR 2004 Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol. Cell. Proteomics 3 24–42

    Article  CAS  PubMed  Google Scholar 

  • Schütze K, Becker I, Becker KF, Thalhammer S, Stark R, Heckl WM, Böhm M and Pösl H 1997 Cut out or poke in–the key to the world of single genes: laser micromanipulation as a valuable tool on the look-out for the origin of disease. Genet. Anal. 14 1–8

    Article  PubMed  Google Scholar 

  • Schütze K, Pösl H and Lahr G 1998 Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell. Mol. Biol. 44 735–746

    PubMed  Google Scholar 

  • Schwarz E, Izmailov R, Spain M, Barnes A, Mapes JP, Guest PC, Rahmoune H, Pietsch S, et al. 2010 Validation of a blood-based laboratory test to aid in the confirmation of a diagnosis of schizophrenia. Biomark. Insights 5 39–47

    PubMed Central  PubMed  Google Scholar 

  • Sethuraman M, McComb ME, Heibeck T, Costello CE and Cohen RA 2004 Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Mol. Cell. Proteomics 3 273–278

    Article  CAS  PubMed  Google Scholar 

  • Shenoy A and Geiger T 2015 Super-SILAC: current trends and future perspectives. Expert Rev. Proteomics 12 13–19

    Article  CAS  PubMed  Google Scholar 

  • Shiio Y and Aebersold R 2006 Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat. Protoc. 1 139–145

    Article  CAS  PubMed  Google Scholar 

  • Simone NL, Bonner RF, Gillespie JW, Emmert-Buck MR and Liotta LA 1998 Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14 272–276

    Article  CAS  PubMed  Google Scholar 

  • Simone NL, Paweletz CP, Charboneau L, Petricoin EF 3rd and Liotta LA 2000 Laser capture microdissection: beyond functional genomics to proteomics. Mol. Diagn. 5 301–307

    Article  CAS  PubMed  Google Scholar 

  • Soga T, Wong DW, Clarke IJ and Parhar IS 2010 Citalopram (antidepressant) administration causes sexual dysfunction in male mice through RF-amide related peptide in the dorsomedial hypothalamus. Neuropharmacology. 59 77–85

    Article  CAS  PubMed  Google Scholar 

  • Spellman DS, Deinhardt K, Darie CC, Chao MV and Neubert TA 2008 Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol. Cell. Proteomics 7 1067–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szego EM, Janaky T, Szabo Z, Csorba A, Kompagne H, Müller G, Lévay G, Simor A, et al. 2010 A mouse model of anxiety molecularly characterized by altered protein networks in the brain proteome. Eur. Neuropsychopharmacol. 20 96–111

    Article  CAS  PubMed  Google Scholar 

  • Tam EM, Morrison CJ, Wu YI, Stack MS and Overall CM 2004 Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc. Natl. Acad. Sci. USA. 101 6917–6922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tambor V, Hunter CL, Seymour SL, Kacerovsky M, Stulik J and Lenco J 2012 CysTRAQ - A combination of iTRAQ and enrichment of cysteinyl peptides for uncovering and quantifying hidden proteomes. J. Proteomics 75 857–867

    Article  CAS  PubMed  Google Scholar 

  • Tangrea MA, Mukherjee S, Gao B, Markey SP, Du Q, Armani M, Kreitman MS, Rosenberg AM, et al. 2011 Effect of immunohistochemistry on molecular analysis of tissue samples: implications for microdissection technologies. J. Histochem. Cytochem. 59 591–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taurino F, Stanca E, Siculella L, Trentadue R, Papa S, Zanotti F and Gnoni A 2012 Mitochondrial proteome analysis reveals depression of the Ndufs3 subunit and activity of complex I in diabetic rat brain. J. Proteomics 75 2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Tsuji T, Shiozaki A, Kohno R, Yoshizato K and Shimohama S 2002 Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem. Res. 27 1245–1253

    Article  CAS  PubMed  Google Scholar 

  • Tyers M and Mann M 2003 From genomics to proteomics. Nature 422 193–197

    Article  CAS  PubMed  Google Scholar 

  • Unlu M, Morgan ME and Minden JS 1997 Difference gel electrophoresis A single gel method for detecting changes in protein extracts. Electrophoresis 18 2071–2077

    Article  CAS  PubMed  Google Scholar 

  • Vanheel A, Daniels R, Plaisance S, Baeten K, Hendriks JJ, Leprince P, Dumont D, Robben J, et al. 2012 Identification of protein networks involved in the disease course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. PLoS One 7 e35544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vercauteren FG, Bergeron JJ, Vandesande F, Arckens L and Quirion R 2004 Proteomic approaches in brain research and neuropharmacology. Eur. J. Pharmacol. 500 385–398

    Article  CAS  PubMed  Google Scholar 

  • Wang D and Bodovitz S 2010 Single cell analysis: the new frontier in 'omics'. Trends Biotechnol. 28 281–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wasinger VC and Corthals GL 2002 Proteomic tools for biomedicine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 771 33–48

    Article  CAS  PubMed  Google Scholar 

  • Wildsmith KR, Schauer SP, Smith AM, Arnott D, Zhu Y, Haznedar J, Kaur S, Mathews WR, et al. 2014 Identification of longitudinally dynamic biomarkers in Alzheimer's disease cerebrospinal fluid by targeted proteomics. Mol. Neurodegener. 9 22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wong MH, Saam JR, Stappenbeck TS, Rexer CH and Gordon JI 2000 Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc. Natl. Acad. Sci. USA 97 12601–12606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright PC, Noirel J, Ow SY and Fazeli A 2012 A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. Theriogenology. 77 738–765. e52

    Article  CAS  PubMed  Google Scholar 

  • Wu WW, Wang G, Insel PA, Hsiao CT, Zou S, Maudsley S, Martin B and Shen RF 2011 Identification of proteins and phosphoproteins using pulsed Q collision induced dissociation (PQD). J. Am. Soc. Mass Spectrom. 22 1753–1762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu WW, Wang G, Insel PA, Hsiao CT, Zou S, Martin B, Maudsley S and Shen RF 2012 Discovery- and target-based protein quantification using iTRAQ and pulsed Q collision induced dissociation (PQD). J. Proteomics 75 2480–2487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yates JR 3rd, Eng JK and McCormack AL 1995 Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 67 1426–1436

    Article  CAS  PubMed  Google Scholar 

  • Yates JR, Ruse CI and Nakorchevsky A 2009 Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11 49–79

    Article  CAS  PubMed  Google Scholar 

  • Yu LR, Johnson MD, Conrads TP, Smith RD, Morrison RS and Veenstra TD 2002 Proteome analysis of camptothecin-treated cortical neurons using isotope-coded affinity tags. Electrophoresis 23 1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Zamo A and Cecconi D 2010 Proteomic analysis of lymphoid and haematopoietic neoplasms: There’s More than biomarker discovery. J. Proteomics 73 508–520

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Goodlett DR, Peskind ER, Quinn JF, Zhou Y, Wang Q, Pan C, Yi E, et al. 2005a Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol. Aging 26 207–227

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Goodlett DR, Quinn JF, Peskind ER, Kaye JA, Zhou Y, Pan C, Yi E, et al. 2005b Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J. Alzheimers Dis. 7 125–133

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhao H, Blagg BS and Dobrowsky RT 2012a C-Terminal Heat Shock Protein 90 Inhibitor Decreases Hyperglycemia-induced Oxidative Stress and Improves Mitochondrial Bioenergetics in Sensory Neurons. J. Proteome Res. 11 2581–2593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang S, Liu X, Kang X, Sun C, Lu H, Yang P and Liu Y 2012b iTRAQ plus 18O: A new technique for target glycoprotein analysis. Talanta 91 122–127

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Wang Y, Kovacs M, Jin J and Zhang J 2005 Microglial activation induced by neurodegeneration: a proteomic analysis. Mol. Cell. Proteomics 4 1471–1479

    Article  CAS  PubMed  Google Scholar 

  • Zieske LR 2006 A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J. Exp. Bot. 57 1501–1508

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Sethi.

Additional information

Corresponding editor: Neeraj Jain

[Sethi S, Chourasia D and Parhar IS 2015 Approaches for targeted proteomics and its potential applications in neuroscience. J. Biosci.] DOI 10.1007/s12038-015-9537-1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, S., Chourasia, D. & Parhar, I.S. Approaches for targeted proteomics and its potential applications in neuroscience. J Biosci 40, 607–627 (2015). https://doi.org/10.1007/s12038-015-9537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-015-9537-1

Keywords

Navigation