Skip to main content

Complementary Techniques

Laser Capture Microdissection—Increasing Specificity of Gene Expression Profiling of Cancer Specimens

  • Chapter
Microarray Technology and Cancer Gene Profiling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 593))

Abstract

Recent developments in sensitive genome characterization and quantitative gene expression analyses that permit precise molecular genetic fingerprinting of tumoral tissue are having a huge impact on cancer diagnostics. However, the significance of the data obtained with these techniques strictly depends on the composition of the biological sample to be analyzed and is greatly enhanced by including a preprocessing step that allows the researcher to distinguish and isolate selected cell populations from surrounding undesired material. This may represent a remarkable problem: indeed, genomic and proteomic analysis in the context of cancer investigation is susceptible to contamination by nonneoplastic cells, which can mask some tumor-specific alterations. Moreover, the heterogeneity of the tissues of a histo-logical section, in which the cell population of interest may constitute only a small fraction, can represent an insurmountable difficulty for the use of quantitative techniques that absolutely depend on genomic material stricdy derived from the cells that require analysis. This is obviously not possible if DNA or RNA is extracted from entire biopsies.

In the past, this obstacle was partially overcome by manual dissection from slides with a needle or scalpel; however, this method is feasible only if there is a clear demarcation between the tissue under consideration and its surroundings and moreover, allows only an approximate separation of tissues. The recent development of microdissection systems based on laser technology has largely solved this important problem.

Laser microdissection is a powerful tool for the isolation of specific cell populations (or single cells) from stained sections of both formalin-fixed, paraffin-embedded and frozen tissues, from cell cultures and even of a single chromosome within a metaphase cell. Resulting material is suitable for a wide range of downstream assays such LOH (loss of heterozygosity) studies, gene expression analysis at the mRNA level and a variety of proteomic approaches such as 2D gel analysis, reverse phase protein array and SELDI protein profiling. This chapter describes the characteristics of the most widely utilized laser microdissection systems and their current applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeln EC, Smit VT, Wessels JW et al. Molecular genetic evidence for the conversion hypothesis of the origin of malignant mixed mullerian tumours. J Pathol 1997;183:424–31.

    Article  PubMed  CAS  Google Scholar 

  2. Perren A, Roth J, Muletta-Feurer S et al. Clonal analysis of sporadic pancreatic endocrine tumours. J Pathol 1998;186:363–71.

    Article  PubMed  CAS  Google Scholar 

  3. Saxena A, Alport EC, Custead S et al. Molecular analysis of clonality of sporadic angiomyolipoma. J Pathol 1999;189:79–84.

    Article  PubMed  CAS  Google Scholar 

  4. Looijenga LH, Rosemberg C, van Gurp RH et al. Comparative genomic hybridization of microdissected samples from different stages in the development of a seminoma and a non-seminoma. J Pathol 2000;191:187–92.

    Article  PubMed  CAS  Google Scholar 

  5. Shibata D. Selective ultraviolet radiation fractionation and polymerase chain reaction analysis of genetic alterations. Am J Pathol 1993;143:1523–6.

    PubMed  CAS  Google Scholar 

  6. Emmert-Buck MR, Bonner RF, Smith PD et al. Laser capture microdissection. Science 1996;274:998–1001.

    Article  PubMed  CAS  Google Scholar 

  7. Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 2003;103:577–644.

    Article  PubMed  CAS  Google Scholar 

  8. Srinivasan R, Leigh WJ. Ablative photodecomposition: Action of far ultraviolet (193 nm) laser radiation on poly (ethyleneterephthalate) films. J Amer Chem Soc 1982;104:6784–5.

    Article  CAS  Google Scholar 

  9. Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol 1983;96:710–5.

    PubMed  CAS  Google Scholar 

  10. Di Cristofano C, Mrad K, Zavaglia K et al. Papillary lesions of the breast: A molecular progression? Breast Cancer Res Treat 2005;90:71–6.

    Article  PubMed  CAS  Google Scholar 

  11. D’Arrigo A, Belluco C, Ambrosi A et al. Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int J Cancer 2005;115:256–62.

    Article  PubMed  CAS  Google Scholar 

  12. Coco S, Defferrari R, Scaruffi P et al. Genome analysis and gene expression profiling of neuroblastoma and ganglioneuroblastoma reveal differences between neuroblastic and Schwannian stromal cells. J Pathol 2005;207:346–357.

    Article  PubMed  CAS  Google Scholar 

  13. Burgemeister R. New aspects of laser microdissection in research and routine. J Histochem Cytochem 2005;53:409–12.

    Article  PubMed  CAS  Google Scholar 

  14. Schneider-Stock R, Boltze C, Jaeger V et al. Significance of loss of heterozygosity of the RB1 gene during tumour progression in well-differentiated liposarcomas. J Pathol 2002;197:654–60.

    Article  PubMed  CAS  Google Scholar 

  15. Sethi N, Palefsky J. Transcriptional profiling of dysplastic lesions in K14-HPV16 transgenic mice using laser microdissection. FASEB J 2004;18:1243–5.

    PubMed  CAS  Google Scholar 

  16. Cowherd SM, Espina VA, Petricoin IIIrd EF et al. Proteomic analysis of human breast cancer tissue with laser-capture microdissection and reverse-phase protein microarrays. Clin Breast Cancer 2004;5:385–92.

    Article  PubMed  CAS  Google Scholar 

  17. Sugiyama Y, Farrow B, Murillo C et al. Analysis of differential gene expression patterns in colon cancer and cancer stroma using microdissected tissues. Gastroenterology 2005;128:480–6.

    Article  PubMed  CAS  Google Scholar 

  18. Ma XJ, Salunga R, Tuggle JT et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003;100:5974–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ren ZP, Sallstrom J, Sundstrom C et al. Recovering DNA and optimizing PCR conditions from microdissected formalin-fixed and paraffin-embedded materials. Pathobiology 2000;68:215–7.

    Article  PubMed  CAS  Google Scholar 

  20. Gloghini A, Canal B, Klein U et al. RT-PCR analysis of RNA extracted from Bouin-fixed and paraffin-embedded lymphoid tissues. J Mol Diagn 2004;6:290–6.

    PubMed  CAS  Google Scholar 

  21. Florell SR, Coffin CM, Holden JA et al. Preservation of RNA for functional genomic studies: A multidisciplinary tumor bank protocol. Mod Pathol 2001;14:116–28.

    Article  PubMed  CAS  Google Scholar 

  22. Roos-van Groningen MC, Eikmans M, Baelde HJ et al. Improvement of extraction and processing of RNA from renal biopsies. Kidney Int 2004;65:97–105.

    Article  PubMed  CAS  Google Scholar 

  23. Kunz Jr GM, Chan DW. The use of laser capture microscopy in proteomics research-a review. Dis Markers 2004;20:155–60.

    PubMed  Google Scholar 

  24. Ehrig T, Abdulkadir SA, Dintzis SM et al. Quantitative amplification of genomic DNA from histological tissue sections after staining with nuclear dyes and laser capture microdissection. J Mol Diagn 2001;3:22–5.

    PubMed  CAS  Google Scholar 

  25. Burgemeister R, Gangnus R, Haar B et al. High quality RNA retrieved from samples obtained by using LMPC (laser microdissection and pressure catapulting) technology. Pathol Res Pract 2003;199:431–6.

    Article  PubMed  CAS  Google Scholar 

  26. Okuducu AF, Janzen V, Hahne JC et al. Influence of histochemical stains on quantitative gene expression analysis after laser-assisted microdissection. Int J Mol Med 2003;11:449–53.

    PubMed  CAS  Google Scholar 

  27. Craven RA, Totty N, Harnden P et al. Laser capture microdissection and two-dimensional poly-acrylamide gel electrophoresis: Evaluation of tissue preparation and sample limitations. Am J Pathol 2002;160:815–22.

    PubMed  CAS  Google Scholar 

  28. Fend F, Emmert-Buck MR, Chuaqui R et al. Immuno-LCM: Laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol 1999;154:61–6.

    PubMed  CAS  Google Scholar 

  29. Fend F, Kremer M, Quintanilla-Martinez L. Laser capture microdissection: Methodical aspects and applications with emphasis on immuno-laser capture microdissection. Pathobiology 2000;68:209–14.

    Article  PubMed  CAS  Google Scholar 

  30. Fink L, Kinfe T, Seeger W et al. Immunostaining for cell picking and real-time mRNA quantitation. Am J Pathol 2000;157:1459–66.

    PubMed  CAS  Google Scholar 

  31. Fink L, Kinfe T, Stein MM et al. Immunostaining and laser-assisted cell picking for mRNA analysis. Lab Invest 2000;80:327–33.

    PubMed  CAS  Google Scholar 

  32. Burbach GJ, Dehn D, Nagel B et al. Laser microdissection of immunolabeled astrocytes allows quantification of astrocytic gene expression. J Neurosci Methods 2004;138:141–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Esposito, G. (2007). Complementary Techniques. In: Mocellin, S. (eds) Microarray Technology and Cancer Gene Profiling. Advances in Experimental Medicine and Biology, vol 593. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39978-2_6

Download citation

Publish with us

Policies and ethics