Skip to main content

Stable Isotope Labeling by Amino Acids in Cell Culture for Quantitative Proteomics

  • Protocol
Quantitative Proteomics by Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 359))

Abstract

Mass spectrometry (MS)-based quantitative proteomics is an increasingly popular approach to study changes in protein abundances in biological samples. Stable isotope labeling by amino acids in cell culture (SILAC), one of the more widely used methods for quantitative proteomics, is a metabolic-labeling strategy that encodes whole cellular proteomes. Cells are grown in a culture medium where the natural form of an amino acid is replaced with a stable isotope form, such as arginine bearing six 13C atoms. Incorporation of the “heavy” amino acid occurs through cell growth, protein synthesis, and turnover. SILAC allows “light” and “heavy” proteomes to be distinguished by MS while avoiding any chemical derivatization and associated purification. In this chapter, we provide detailed SILAC protocols and explain how to incorporate SILAC into any experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ong, S. E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262.

    Article  CAS  PubMed  Google Scholar 

  2. Ong, S. E., Blagoev, B., Kratchmarova, I., et al. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1, 376–386.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu, H., Pan, S., Gu, S., Bradbury, E. M., and Chen, X. (2002) Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun. Mass Spectrom. 16, 2115–2123.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, H. and English, A. M. (2002) Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine. J. Proteome Res. 1, 345–350.

    Article  CAS  PubMed  Google Scholar 

  5. Everley, P. A., Krijgsveld, J., Zetter, B. R., and Gygi, S. P. (2004) Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell Proteomics 3, 729–735.

    Article  CAS  PubMed  Google Scholar 

  6. Gu, S., Du, Y., Chen, J., et al. (2004) Large-scale quantitative proteomic study of PUMA-induced apoptosis using two-dimensional liquid chromatography-mass spectrometry coupled with amino acid-coded mass tagging. J. Proteome Res. 3, 1191–1200.

    Article  CAS  PubMed  Google Scholar 

  7. Blagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M., Foster, L. J., and Mann, M. (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315–318.

    Article  CAS  PubMed  Google Scholar 

  8. de Hoog, C. L., Foster, L. J., and Mann, M. (2004) RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell 117, 649–662.

    Article  PubMed  Google Scholar 

  9. Foster, L. J., De Hoog, C. L., and Mann, M. (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl. Acad. Sci. USA 100, 5813–5818.

    Article  CAS  PubMed  Google Scholar 

  10. Andersen, J. S., Lam, Y. W., Leung, A. K., et al. (2005) Nucleolar proteome dynamics. Nature 433, 77–83.

    Article  CAS  PubMed  Google Scholar 

  11. Blagoev, B., Ong, S. E., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145.

    Article  CAS  PubMed  Google Scholar 

  12. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M., and Mann, M. (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–1477.

    Article  CAS  PubMed  Google Scholar 

  13. Pratt, J. M., Petty, J., Riba-Garcia, I., et al. (2002) Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell Proteomics 1, 579–591.

    Article  CAS  PubMed  Google Scholar 

  14. Doherty, M. K., Whitehead, C., McCormack, H., Gaskell, S. J., and Beynon, R. J. (2005) Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates. Proteomics 5, 522–533.

    Article  CAS  PubMed  Google Scholar 

  15. Ibarrola, N., Molina, H., Iwahori, A., and Pandey, A. (2004) A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C]tyrosine. J. Biol. Chem. 279, 15,805–15,813.

    Article  CAS  PubMed  Google Scholar 

  16. Ong, S. E., Mittler, G., and Mann, M. (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat. Methods 1, 119–126.

    Article  CAS  PubMed  Google Scholar 

  17. Ibarrola, N., Kalume, D. E., Gronborg, M., Iwahori, A., and Pandey, A. (2003) A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal. Chem. 75, 6043–6049.

    Article  CAS  PubMed  Google Scholar 

  18. Ballif, B. A., Roux, P. P., Gerber, S. A., MacKeigan, J. P., Blenis, J., and Gygi, S. P. (2005) Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc. Natl. Acad. Sci. USA 102, 667–672.

    Article  CAS  PubMed  Google Scholar 

  19. Ishihama, Y., Sato, T., Tabata, T., et al. (2005) Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat. Biotechnol. 23, 617–621.

    Article  CAS  PubMed  Google Scholar 

  20. Schulze, W. X. and Mann, M. (2004) A novel proteomic screen for peptide-protein interactions. J. Biol. Chem. 279, 10,756–10,764.

    Article  CAS  PubMed  Google Scholar 

  21. Gruhler, A., Olsen, J. V., Mohammed, S., et al. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell Proteomics 4, 310–327.

    Article  CAS  PubMed  Google Scholar 

  22. Gruhler, A., Schulze, W. X., Matthiesen, R., Mann, M., and Jensen, O. N. (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol. Cell Proteomics 4, 1697–1709.

    Article  CAS  PubMed  Google Scholar 

  23. MacCoss, M. J. and Matthews, D. E. (2005) Quantitative MS for proteomics: teaching a new dog old tricks. Anal. Chem. 77, 294A–302A.

    CAS  PubMed  Google Scholar 

  24. Olsen, J. V., Ong, S. E., and Mann, M. (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell Proteomics 3, 608–614.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, R. and Regnier, F. E. (2002) Minimizing resolution of isotopically coded peptides in comparative proteomics. J. Proteome Res. 1, 139–147.

    Article  CAS  PubMed  Google Scholar 

  26. Gehrmann, M. L., Hathout, Y., and Fenselau, C. (2004) Evaluation of metabolic labeling for comparative proteomics in breast cancer cells. J. Proteome Res. 3, 1063–1068.

    Article  CAS  PubMed  Google Scholar 

  27. Ong, S. E., Kratchmarova, I., and Mann, M. (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2, 173–181.

    Article  CAS  PubMed  Google Scholar 

  28. Ishihama, Y. (2005) Proteomic LC-MS systems using nanoscale liquid chromatography with tandem mass spectrometry. J. Chromatogr. A. 1067, 73–83.

    Article  CAS  PubMed  Google Scholar 

  29. Meng, F., Forbes, A. J., Miller, L. M., and Kelleher, N. L. (2005) Detection and localization of protein modifications by high resolution tandem mass spectrometry. Mass Spectrom. Rev. 24, 126–134.

    Article  CAS  PubMed  Google Scholar 

  30. MacCoss, M. J., Wu, C. C., Liu, H., Sadygov, R., and Yates, J. R., 3rd (2003) A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal. Chem. 75, 6912–6921.

    Article  CAS  PubMed  Google Scholar 

  31. Li, X. J., Zhang, H., Ranish, J. A., and Aebersold, R. (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 75, 6648–6657.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Ong, SE., Mann, M. (2007). Stable Isotope Labeling by Amino Acids in Cell Culture for Quantitative Proteomics. In: Sechi, S. (eds) Quantitative Proteomics by Mass Spectrometry. Methods in Molecular Biology, vol 359. Humana Press. https://doi.org/10.1007/978-1-59745-255-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-255-7_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-571-2

  • Online ISBN: 978-1-59745-255-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics