Skip to main content

Advertisement

Log in

Anti-Vascular Endothelial Growth Factor Treatment Suppresses Early Brain Injury After Subarachnoid Hemorrhage in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The role of vascular endothelial growth factor (VEGF) in early brain injury (EBI) after subarachnoid hemorrhage (SAH) remains unclear. The aim of this study was to investigate effects of anti-VEGF therapy on EBI after SAH. C57BL/6 male mice underwent sham or filament perforation SAH modeling, and vehicle or two dosages (0.2 and 1 μg) of anti-VEGF antibody were randomly administrated by an intracerebroventricular injection. Neuroscore, brain water content, immunoglobulin G staining, and Western blotting were performed to evaluate EBI at 24–48 h. To confirm the role of VEGF, anti-VEGF receptor (VEGFR)-2 (a major receptor of VEGF) antibody was intracerebroventricularly administered and the effects on EBI were evaluated at 24 h. A higher dose, but not a lower dose, of anti-VEGF antibody significantly ameliorated post-SAH neurological impairments and brain edema at 24–48 h post-SAH. Post-SAH blood-brain barrier disruption was also inhibited by anti-VEGF antibody. The protective effects of anti-VEGF antibody were associated with the inhibition of post-SAH induction of VEGF, VEGFR-2, phosphorylated VEGFR-2, interleukin-1β and a matricellular protein tenascin-C (TNC). Anti-VEGFR-2 antibody also suppressed post-SAH neurological impairments and brain edema associated with VEGFR-2 inactivation and TNC downregulation. These findings demonstrated that VEGF causes post-SAH EBI via VEGFR-2 and TNC and that anti-VEGF therapy is effective for post-SAH EBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BBB:

Blood-brain barrier

CSF:

Cerebrospinal fluid

EBI:

Early brain injury

EGF:

Epidermal growth factor

IL:

Interleukin

MAPK:

Mitogen-activation protein kinase

PBS:

Phosphate-buffered saline

PDGF:

Platelet-derived growth factor

p-VEGFR-2:

Phosphorylated vascular endothelial growth factor receptor-2

SAH:

Subarachnoid hemorrhage

TNC:

Tenascin-C

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

ZO:

Zona occludens

References

  1. Cahill J, Calvert JW, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26:1341–1353

    Article  CAS  PubMed  Google Scholar 

  2. Fujii M, Yan J, Rolland WB et al (2013) Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 4:432–446

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  4. Jiang S, Xia R, Jiang Y et al (2014) Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier. PLoS One 9:e86407

    Article  PubMed  PubMed Central  Google Scholar 

  5. Argaw AT, Asp L, Zhang J et al (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kusaka G, Ishikawa M, Nanda A et al (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:916–925

    Article  CAS  PubMed  Google Scholar 

  7. Tucker RP, Chiquet-Ehrismann R (2009) The regulation of tenascin expression by tissue microenvironments. Biochim Biophys Acta 1793:888–892

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki H, Kanamaru K, Shiba M et al (2011) Cerebrospinal fluid tenascin-C in cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol 23:310–317

    Article  PubMed  Google Scholar 

  9. Shiba M, Fujimoto M, Imanaka-Yoshida K et al (2014) Tenascin-C causes neuronal apoptosis after subarachnoid hemorrhage in rats. Transl Stroke Res 5:238–247

    Article  PubMed  Google Scholar 

  10. Altay O, Suzuki H, Hasegawa Y et al (2012) Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke 43:2513–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chi OZ, Hunter C, Liu X et al (2007) Effects of anti-VEGF antibody on blood-brain barrier disruption in focal cerebral ischemia. Exp Neurol 204:283–287

    Article  CAS  PubMed  Google Scholar 

  12. Krum JM, Mani N, Rosenstein JM (2008) Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp Neurol 212:108–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki H, Zhang JH (2012) Neurobehavioral assessments of subarachnoid hemorrhage. In: Chen J, Xu X-M, Xu ZC, Zhang JH (eds) Springer protocols handbooks. Animal models of acute neurological injuries II. Humana, New York, pp 435–440

    Chapter  Google Scholar 

  14. Richmon JD, Fukuda K, Maida N et al (1998) Induction of heme oxygenase-1 after hyperosmotic opening of the blood-brain barrier. Brain Res 780:108–118

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki H, Ayer R, Sugawara T et al (2010) Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 38:612–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zacharia BE, Hickman ZL, Grobelny BT et al (2010) Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am 21:221–233

    Article  PubMed  Google Scholar 

  17. Friedrich V, Flores R, Muller A et al (2010) Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience 165:968–975

    Article  CAS  PubMed  Google Scholar 

  18. Scholler K, Trinkl A, Klopotowski M et al (2007) Characterization of microvascular basal lamina damage and blood-brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Res 1142:237–246

    Article  PubMed  Google Scholar 

  19. Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci 109:227–241

    Article  CAS  PubMed  Google Scholar 

  20. Ostrowski RP, Colohan AR, Zhang JH (2005) Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 25:554–571

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki H, Hasegawa Y, Kanamaru K et al (2010) Mechanisms of osteopontin-induced stabilization of blood-brain barrier disruption after subarachnoid hemorrhage in rats. Stroke 41:1783–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yatsushige H, Ostrowski RP, Tsubokawa T et al (2007) Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res 85:1436–1448

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Xu X, Zhou D et al (2014) Possible role of Raf-1 kinase in the development of cerebral vasospasm and early brain injury after experimental subarachnoid hemorrhage in rats. Mol Neurobiol. doi:10.1007/s12035-014-8939-7

    Google Scholar 

  24. Shibuya M (2013) Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 153:13–19

    Article  CAS  PubMed  Google Scholar 

  25. Davis B, Tang J, Zhang L et al (2010) Role of vasodilator stimulated phosphoprotein in VEGF induced blood-brain barrier permeability in endothelial cell monolayers. Int J Dev Neurosci 28:423–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Midwood KS, Hussenet T, Langlois B et al (2011) Advances in tenascin-C biology. Cell Mol Life Sci 68:3175–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Udalova IA, Ruhmann M, Thomson SJ et al (2011) Expression and immune function of tenascin-C. Crit Rev Immunol 31:115–145

    Article  CAS  PubMed  Google Scholar 

  28. Fujimoto M, Suzuki H, Shiba M et al (2013) Tenascin-C induces prolonged constriction of cerebral arteries in rats. Neurobiol Dis 55:104–109

    Article  CAS  PubMed  Google Scholar 

  29. Shiba M, Suzuki H, Fujimoto M et al (2012) Imatinib mesylate prevents cerebral vasospasm after subarachnoid hemorrhage via inhibiting tenascin-C expression in rats. Neurobiol Dis 46:172–179

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka K, Hiraiwa N, Hashimoto H et al (2004) Tenascin-C regulates angiogenesis in tumor through the regulation of vascular endothelial growth factor expression. Int J Cancer 108:31–40

    Article  CAS  PubMed  Google Scholar 

  31. Fujimoto M, Shiba M, Kawakita F et al. (2015) Deficiency of tenascin-C attenuates blood-brain barrier disruption after experimental subarachnoid hemorrhage in mice. J Neurosurg. In press

  32. Li W, Lu ZF, Man XY et al (2012) VEGF upregulates VEGF receptor-2 on human outer root sheath cells and stimulates proliferation through ERK pathway. Mol Biol Rep 39:8687–8694

    Article  CAS  PubMed  Google Scholar 

  33. Sozen T, Tsuchiyama R, Hasegawa Y et al (2009) Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke 40:2519–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiquet-Ehrismann R, Chiquet M (2003) Tenascins: regulation and putative functions during pathological stress. J Pathol 200:488–499

    Article  CAS  PubMed  Google Scholar 

  35. Kuriyama N, Duarte S, Hamada T et al (2011) Tenascin-C: a novel mediator of hepatic ischemia and reperfusion injury. Hepatology 54:2125–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Narita Y (2013) Drug review: safety and efficacy of bevacizumab for glioblastoma and other brain tumors. Jpn J Clin Oncol 43:587–595

    Article  PubMed  Google Scholar 

  37. Stefanini FR, Badaro E, Falabella P et al (2014) Anti-VEGF for the management of diabetic macular edema. J Immunol Res 2014:632307

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ms. Chiduru Yamamoto (Department of Neurosurgery, Mie University Graduate School of Medicine) for her technical assistance. This work was supported by a Grant-in-Aid for Scientific Research from Mie University Hospital Seed Grant Program 2014 to Dr. Suzuki, and Japan Society for the Promotion of Science to Dr. Fujimoto.

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Animals

All procedures were approved by the Animal Ethics Review Committee of Mie University, and were carried out according to the institution’s Guidelines for Animal Experiments.

Funding

This work was funded by a Grant-in-Aid for Scientific Research from Mie University Hospital Seed Grant Program 2014 to Dr. Suzuki, and Japan Society for the Promotion of Science to Dr. Fujimoto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Suzuki.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 5366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Fujimoto, M., Kawakita, F. et al. Anti-Vascular Endothelial Growth Factor Treatment Suppresses Early Brain Injury After Subarachnoid Hemorrhage in Mice. Mol Neurobiol 53, 4529–4538 (2016). https://doi.org/10.1007/s12035-015-9386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9386-9

Keywords

Navigation