Skip to main content
Log in

Intercalation of \(\hbox {LDH NO}_{{3}}\) with short-chain intercalants

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Intercalation behaviour of layered-double hydroxide (LDH) with short-chain intercalants (\({-}(\hbox {CH}_{2})_{n}{-}, n<9\)) is significantly difficult and less reported than with long-chain intercalants. The present study reports an efficient way to intercalate LDH with short-chain intercalants (\(n=4\) and 8) and investigates the effect of layer charge on intercalation behaviour of LDHs. Short-chain anionic surfactants were successfully intercalated with synthetic LDHs \([\hbox {Zn}_{1-x}\hbox {Al}_{x}(\hbox {OH})_{2}\hbox {NO}_{{3}}{\cdot } n\hbox {H}_{2}\hbox {O},\,x=0.2{-}0.33]\) by an ion-exchange intercalation technique in a slightly acidic medium (\(\hbox {pH}=5.4\)). The adverse effect of a carbonate anion was avoided by performing the ion-exchange intercalation in slightly acidic medium (\(\hbox {pH}=5.4\)). It was found that basal spacing \((d_{003})\) and experimental organic loading of intercalated LDH (O-LDH) increase monotonically with increasing anion-exchange capacity of LDH and intercalant chain length. The evolution of intercalated LDH (O-LDH) structures with increasing intercalant chain length and layered charge has been deciphered by correlating basal spacing of O-LDHs (by X-ray powder diffraction), organic loading data (by thermogravimetric analysis) and molecular conformation of O-LDHs (by Fourier-transform infrared spectroscopy) within the LDH gallery. Successful intercalation of LDH with these short-chain intercalants in slightly acidic medium has not been reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Motokura K, Nishimura D, Mori K, Mizugaki T, Ebitani K and Kaneda K 2004 J. Am. Chem. Soc. 126 5662

    Article  CAS  Google Scholar 

  2. Zou X, Goswami A and Asefa T 2013 J. Am. Chem. Soc. 135 17242

    Article  CAS  Google Scholar 

  3. Shu Y, Yin P, Wang J, Liang B, Wang H and Guo L 2014 Ind. Eng. Chem. Res. 53 3820

    Article  CAS  Google Scholar 

  4. Chakraborty C, Dana K and Malik S 2011 J. Phys. Chem. C 115 1996

    Article  CAS  Google Scholar 

  5. Bi B, Xu L, Xu B B and Liu X Z 2011 Appl. Clay Sci. 54 242

    Article  CAS  Google Scholar 

  6. Starukh G, Rozovik O and Oranska O 2016 Nanoscale Res. Lett. 11 10

    Article  Google Scholar 

  7. Prasanna S R, Rao A P and Kamath P V 2006 J. Colloid Interface Sci. 304 292

    Article  CAS  Google Scholar 

  8. Radha A K, Kamath P V and Shivakumara C 2007 J. Phys. Chem. B 111 3411

    Article  CAS  Google Scholar 

  9. Miyata S and Kumara T 1973 Chem. Lett. 2 843

    Article  Google Scholar 

  10. Costa F R, Leuteritz A, Wagenknecht U, Jehnichen D, Haussler L and Heinrich G 2008 Appl. Clay Sci. 38 153

    Article  CAS  Google Scholar 

  11. Crepaldi E L, Pavan P C and Valim J B 1999 Chem. Commun. 2 155

    Article  Google Scholar 

  12. Ayala-Luis K B, Koch C B and Hansen H C B 2010 Appl. Clay Sci. 48 334

    Article  CAS  Google Scholar 

  13. Costa F R, Leuteritz A, Wagenknecht U, Landwehr M A D, Jehnichen D, Haeussler L et al 2009 Appl. Clay Sci. 44 7

    Article  CAS  Google Scholar 

  14. Crepaldi E L, Pavan P C, Tronto J and Valim J B 2002 J. Colloid Interface Sci. 248 429

    Article  CAS  Google Scholar 

  15. Pavan P C, Crepaldi E L and Valim J B 2000 J. Colloid Interface Sci. 229 346

    Article  CAS  Google Scholar 

  16. Refait P, Drissi S H, Pytkiewicz J and Genin J M R 1997 Corros. Sci. 39 1699

    Article  CAS  Google Scholar 

  17. Zhang H, Zhang F Z, Ren L L, Evans D G and Duan X 2004 Mater. Chem. Phys. 85 207

    Article  CAS  Google Scholar 

  18. Pavan P C, Gomes G D and Valim J B 1998 Microporous Mesoporous Mater. 21 659

    Article  CAS  Google Scholar 

  19. Prevot V, Forano C and Besse J P 1998 Inorg. Chem. 37 4293

    Article  CAS  Google Scholar 

  20. Pavan P C, Crepaldi E L, Gomes G D and Valim J B 1999 Colloids Surf. A  154 399

    Article  CAS  Google Scholar 

  21. Antonyraj C A, Koilraj P and Kannan S 2010 Chem. Commun. 46 1902

    Article  CAS  Google Scholar 

  22. Shamim M and Dana K 2016 Thermochim. Acta 632 64

    Article  CAS  Google Scholar 

  23. Ganguly S, Dana K, Mukhopadhyay T K and Ghatak S 2011 Clays Clay Miner. 59 13

    Article  CAS  Google Scholar 

  24. Moyo L, Nhlapo N and Focke W W 2008 J. Mater. Sci. 43 6144

    Article  CAS  Google Scholar 

  25. Nejati K and Rezvani Z 2012 J. Exp. Nanosci. 7 412

    Article  CAS  Google Scholar 

  26. Ogawa M and Hiramine M 2014 Cryst. Growth Des. 14 1516

    Article  CAS  Google Scholar 

  27. Xing F-F, Ni Z-M, Wang P, Pan G-X, Xia S-J and Wang L-G 2007 Acta Chim. Sin. 65 2738

    CAS  Google Scholar 

  28. Choy J-H, Kwak S-Y, Jeong Y-J and Park J-S 2000 Angew. Chem. Int. Ed. 39 4041

    Article  CAS  Google Scholar 

  29. Nalawade P, Aware B, Kadam V J and Hirlekar R S 2009 J. Sci. Ind. Res. 68 267

    CAS  Google Scholar 

  30. Anbarasan R, Lee W D and Im S S 2005 Bull. Mater. Sci. 28 145

    Article  CAS  Google Scholar 

  31. Barahuie F, Hussein M Z, Fakurazi S and Zainal Z 2014 Int. J. Mol. Sci. 15 7750

    Article  Google Scholar 

  32. Li S, Lu J, Xu J, Dang S, Evans D G and Duan X 2010 J. Mater. Chem. 20 9718

    Article  CAS  Google Scholar 

  33. Williams G R, Dunbar T G, Beer A J, Fogg A M and O’Hare D 2006 J. Mater. Chem. 16 1222

    Article  CAS  Google Scholar 

  34. Ruan X, Huang S, Chen H and Qian G 2013 Appl. Clay Sci. 72 96

    Article  CAS  Google Scholar 

  35. Ganguly S, Dana K, Mukhopadhyay T K and Ghatak S 2011 J. Therm. Anal. Calorim. 105 199

    Article  CAS  Google Scholar 

  36. Bai Z M, Wang Z Y, Zhang T G, Fu F and Yang N 2013 Appl. Clay Sci. 75–76 22

    Google Scholar 

  37. Clearfield A, Kieke M, Kwan J, Colon J L and Wang R C 1991 J. Inclusion Phenom. Mol. Recognit. Chem. 11 361

    Article  CAS  Google Scholar 

  38. Sarkar M, Dana K and Ghatak S 2011 J. Mol. Struct. 1005 161

    CAS  Google Scholar 

  39. Jankovič L, Madejová J, Komadel P, Jochec-Mošková D and Chodák I 2011 Appl. Clay Sci. 51 438

    Article  Google Scholar 

  40. Wei M, Pu M, Guo J, Han J B, Li F, He J et al 2008 Chem. Mater. 20 5169

    Article  CAS  Google Scholar 

  41. Babakhani S, Talib Z A, Hussein M Z and Ahmed A A A 2014 Int. J. Spectrosc. 2014 1

    Article  Google Scholar 

  42. Lagaly G 1976 Angew. Chem. 15 575

    Article  Google Scholar 

  43. Meyn M, Beneke K and Lagaly G 1990 Inorg. Chem. 29 5201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work was funded by CSIR under GLASSFIB project and one of the authors (MS) acknowledges the ‘SRF-GATE’ research fellowship granted to him by CSIR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kausik Dana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 282 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamim, M., Dana, K. Intercalation of \(\hbox {LDH NO}_{{3}}\) with short-chain intercalants. Bull Mater Sci 42, 25 (2019). https://doi.org/10.1007/s12034-018-1704-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1704-1

Keywords

Navigation