Skip to main content
Log in

Thermal degradation of alkyl triphenyl phosphonium intercalated montmorillonites

An isothermal kinetic study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The decomposition mechanism of intercalated montmorillonites at a particular temperature region and the activation energy involved in it are the two important aspects which determines the thermal stability of intercalated montmorillonites. In this study, montmorillonite was intercalated with alkyl (methyl, ethyl, propyl, and dodecyl) triphenyl phosphonium intercalates. Differential thermogravimetric analysis of each intercalated montmorillonites showed different peaks with associated organic loss at different temperature zone. Intercalated montmorillonites were subjected to isothermal kinetic analysis corresponding to selected temperature zone obtained from DTG peaks. Activation energies of organic decomposition process at selected temperature zones were determined. Mass spectral analysis and FTIR were done to understand the decomposition mechanisms and to relate them with the estimated activation energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Scheme 1
Fig. 18
Fig. 19
Scheme 2
Fig. 20

Similar content being viewed by others

References

  1. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R. 2000;28:1–63.

    Article  Google Scholar 

  2. Zhu J, Morgan AB, Lamelas FJ, Wilkie CA. Fire properties of polystyrene-clay nanocomposites. Chem Mater. 2001;13:3774–80.

    Article  CAS  Google Scholar 

  3. Sinha Ray S, Okamoto M. Polymer/layered nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–641.

    Article  Google Scholar 

  4. Ruiz-Hitzky E, Aranda P, Serratosa JM. Clay organic interactions: organoclay complexes and polymer–clay nanocomposites, Chap. 3. In: Auerbach S, Carrado KA, Dutta P, editors. Handbook of layered materials. New York: Marcel Dekker; 2004. p. 91–154.

    Google Scholar 

  5. Bergaya F, Theng BKG, Lagaly G. Handbook of clay science, developments in clay science, vol. 1. Amsterdam: Elsevier Ltd; 2006.

    Google Scholar 

  6. Patel HA, Somani RS, Bajaj HC, Jasra RV. Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull Mater Sci. 2006;29:133–45.

    Article  CAS  Google Scholar 

  7. Maguy J, Lambert JF. A new nanocomposite: LDOPA/laponite. J Phys Chem Lett. 2010;1:85–8.

    Article  Google Scholar 

  8. Grim Ralph E. Clay mineralogy. 2nd ed. New York: McGraw Hill; 1968.

    Google Scholar 

  9. Theng BKG. The chemistry of clay-organic reactions. New York: Wiley; 1974.

    Google Scholar 

  10. Emmerich K, Wolters F, Kahr G, Lagaly G. Clay profiling: the classification of montmorillonites. Clays Clay Miner. 2009;57:104–14.

    Article  CAS  Google Scholar 

  11. Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater. 2001;13:2979–90.

    Article  CAS  Google Scholar 

  12. Fajnor VS, Hlavaty V. Thermal stability of clay/organic intercalation complexes. J Therm Anal Calorim. 2002;67:113–8.

    Article  Google Scholar 

  13. Xie W, Xie R, Pan WP, Hunter D, Koene B, Tan LS, et al. Thermal stability of quaternary phosphonium modified montmorillonites. Chem Mater. 2002;14:4837–45.

    Article  CAS  Google Scholar 

  14. Xi Y, Zhou Q, Frost R, He H. Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay. J Colloid Interface Sci. 2007;311:347–53.

    Article  CAS  Google Scholar 

  15. Onal M, Sarikaya Y. Thermal analysis of some organoclays. J Therm Anal Calorim. 2008;91:261–5.

    Article  Google Scholar 

  16. Ganguly S, Dana K, Ghatak S. Thermogravimetric study of n-alkylammonium-intercalated montmorillonites of different cation exchange capacity. J Therm Anal Calorim. 2010;100:71–8.

    Article  CAS  Google Scholar 

  17. Avalos F, Ortiz JC, Zitzumbo R, Manchado MAL, Verdejo R, Arroyo M. Phosphonium salt intercalated montmorillonites. Appl Clay Sci. 2009;43:27–32.

    Article  CAS  Google Scholar 

  18. Li Z, Jhang WT. Interlayer conformations of intercalated dodecyltrimethylammonium in rectorite as determined by FTIR, XRD, and TG analysis. Clays Clay Miner. 2009;57:194–204.

    Article  CAS  Google Scholar 

  19. Yariv S, Ovadyahu D, Nasser A, Shuali U, Lahav N. Thermal analysis study of heat of dehydration of tributylammonium smectites. Thermochim Acta. 1992;207:103–13.

    Article  CAS  Google Scholar 

  20. Balek V, Malek Z, Yariv S, Matuschek G. Characterization of montmorillonite saturated with various cations. J Therm Anal Calorim. 1999;56:67–76.

    Article  CAS  Google Scholar 

  21. Yariv S. The role of charcoal on DTA curves of organo-clay complexes: an overview. Appl Clay Sci. 2004;24:225–36.

    Article  CAS  Google Scholar 

  22. Abramova E, Lapides I, Yariv S. Thermo-XRD investigation of monoionic montmorillonites mechanochemically treated with urea. J Therm Anal Calorim. 2007;90:99–106.

    Article  CAS  Google Scholar 

  23. Halim NA, Ibrahim ZA, Ahmad AB. Intercalation of water and guest molecules within Ca2+—montmorillonite DSC studies in low temperature range. J Therm Anal Calorim. 2010;102(3):983–8.

    Article  CAS  Google Scholar 

  24. Achilias DS, Nikolaidis AK, Karayannidis GP. PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization, study of the reaction kinetics. J Therm Anal Calorim. 2010;102(2):451–60.

    Article  CAS  Google Scholar 

  25. Bayram H, Muserref O, Hamza Y, Yiiksel S. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 2010;101(3):873–9.

    Article  CAS  Google Scholar 

  26. Leite FI, Priscilla S, Soares A, Carvalho LH, Rapso CMO, Matts ML. Characterization of pristine and purified organo-bentonites. J Therm Anal Calorim. 2010;100(2):563–9.

    Article  CAS  Google Scholar 

  27. Lu L, Cai J, Frost RL. Desorption of stearic acid upon surfactant adsorbed montmorillonite, a thermogravimetric study. J Therm Anal Calorim. 2010;100(1):141–4.

    Article  CAS  Google Scholar 

  28. Girgis BS, El-Barawy KA, Feli NS. Dehydration kinetics of some smectites: a thermogravimetric study. Thermochim Acta. 1986;98:181–9.

    Article  Google Scholar 

  29. Guler C, Sarier N. Kinetics of thermal dehydration of acid- activated montmorillonite by the rising temperature technique. Thermochim Acta. 1990;159:29–33.

    Article  CAS  Google Scholar 

  30. Murray P, White J. Kinetics of the thermal dehydration of clays. Trans Br Ceram Soc. 1949;48:187–206.

    CAS  Google Scholar 

  31. Murray P, White J. Kinetics of the thermal dehydration of clays. Part 1. Dehydration characteristics of the clay minerals. Trans Br Ceram Soc. 1955;54:137–49.

    CAS  Google Scholar 

  32. Murray P, White J. Kinetics of the thermal dehydration of clays. Part II. Isothermal decomposition of the clay minerals. Trans Br Ceram Soc. 1955;54:151–87.

    CAS  Google Scholar 

  33. Murray P, White J. Kinetics of the thermal dehydration of clays. Part III. Kinetics analysis of mixtures of the clay minerals. Trans Br Ceram Soc. 1955;54:189–203.

    CAS  Google Scholar 

  34. Murray P, White J. Kinetics of the thermal dehydration of clays. Part IV. Interpretation of the differential thermal analysis of the clay minerals. Trans Br Ceram Soc. 1955;54:204–38.

    CAS  Google Scholar 

  35. Bray HJ, Redfern SAT. Kinetics of dehydration of Ca-montmorillonite. Phys Chem Miner. 1999;26:591–600.

    Article  CAS  Google Scholar 

  36. Mehlich A. Determination of cation- and anion-exchange properties of soils. Soil Sci. 1948;66:429–45.

    Article  CAS  Google Scholar 

  37. Bache BW. The measurement of cation exchange capacity of soils. J Sci Food Agric. 1976;27:273–80.

    Article  CAS  Google Scholar 

  38. Patel HA, Somani RS, Bajaj HC, Jasra RV. Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability. Appl Clay Sci. 2007;35:194–200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Council of Scientific and Industrial Research (CSIR) fellowship grant to Saheli Ganguly (currently working as senior research fellow in C.G.C.R.I., Kolkata). Authors would like to thank XRD, Instrumentation, and TEM section of CGCRI for providing the characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kausik Dana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, S., Dana, K., Mukhopadhyay, T.K. et al. Thermal degradation of alkyl triphenyl phosphonium intercalated montmorillonites. J Therm Anal Calorim 105, 199–209 (2011). https://doi.org/10.1007/s10973-011-1356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1356-5

Keywords

Navigation