Skip to main content
Log in

A critical assessment of the methods for intercalating anionic surfactants in layered double hydroxides

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Anionic surfactant intercalated layered double hydroxides (LDH) of high purity are easily prepared via direct coprecipitation and also by the ion exchange method provided that the precursor contains a monovalent anion, e.g., LDH–Cl or LDH–NO3. However, LDH–CO3 is an attractive starting material as it is commercially available in bulk form owing to large-scale applications as a PVC stabilizer and acid scavenger in polyolefins. Thus, intercalation of dodecyl sulfate and dodecylbenzenesulfonate into a commercial (LDH) with approximate composition [Mg0.654Al0.346(OH)2](CO3)0.173 · 0.5H2O] was explored. Direct ion exchange is difficult as the carbonate is held tenaciously. In the regeneration method it is removed by thermal treatment and the surfactant form obtained by reaction with the layered double hydroxide that forms in aqueous medium. Unfortunately the resulting products are impure, poorly crystallized and only partial intercalation is achieved. Better results were obtained using water-soluble organic acids, e.g., acetic, butyric, or hexanoic acid, to aid decarbonation of LDH–CO3. Intercalation proceeded at ambient temperatures with the precursor powder suspended in an aqueous dispersion of the anionic surfactant. The carboxylic acids are believed to assist intercalation by facilitating the elimination of the carbonate ions present in the anionic clay galleries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brindley GW, Kikkawa S (1979) Am Mineral 64:836

    CAS  Google Scholar 

  2. Miyata S (1980) Clays Clay Miner 28:50. doi:https://doi.org/10.1346/CCMN.1980.0280107

    Article  CAS  Google Scholar 

  3. Kopka H, Beneke K, Lagaly G (1988) J Colloid Interface Sci 123:427. doi:https://doi.org/10.1016/0021-9797(88)90263-9

    Article  CAS  Google Scholar 

  4. Reichle WT (1986) Chemtech 16:58

    CAS  Google Scholar 

  5. Jones W, Chibwe M (1990) In: Mitchell IV (eds) Pillared layered structure: current trends and applications. Elsevier, London, p 67

  6. Cavani F, Trifirò F, Vaccari A (1991) Catal Today 11:173. doi:https://doi.org/10.1016/0920-5861(91)80068-K

    Article  CAS  Google Scholar 

  7. Miyata S, Kumura T (1973) Chem Lett 843. doi:https://doi.org/10.1246/cl.1973.843

    Article  Google Scholar 

  8. Kanoh T, Shichi T, Takagi K (1999) Chem Lett 17. doi:https://doi.org/10.1246/cl.1999.117

    Article  Google Scholar 

  9. Itoh T, Ohta N, Shichi T, Yui T, Takagi K (2003) Langmuir 19:9120. doi:https://doi.org/10.1021/la0302448

    Article  CAS  Google Scholar 

  10. Xu ZP, Braterman PS (2003) J Mater Chem 13:268. doi:https://doi.org/10.1039/b207540g

    Article  CAS  Google Scholar 

  11. Smyth JR, Bish DL (1988) Crystal structures and cation sites of rock forming minerals. Allen and Unwin, London, p 69

  12. Bellotto M, Rebours B, Clause O, Lynch L (1996) J Phys Chem 100:8527. doi:https://doi.org/10.1021/jp960039j

    Article  CAS  Google Scholar 

  13. Porter MR (1994) Handbook of surfactants, 2nd edn. Chapman and Hall

  14. Tadros TF (2005) Applied surfactants principles and applications. Wiley-VCH Verlag GmbH and Co., Heppenheim, p 53

  15. Crepaldi EL, Pavan PC, Tronto J, Cardoso LP, Valim JB (2002) J Colloid Interface Sci 248:429. doi:https://doi.org/10.1006/jcis.2002.8214

    Article  CAS  Google Scholar 

  16. Harwell JH, Hoskins JC, Schechter RS, Wade WH (1985) Langmuir 1:251. doi:https://doi.org/10.1021/la00062a013

    Article  CAS  Google Scholar 

  17. Bitting D, Harwell JH (1987) Langmuir 3:500

    Article  CAS  Google Scholar 

  18. Chandler D (2005) Nature 437:640. doi:https://doi.org/10.1038/nature04162

    Article  CAS  Google Scholar 

  19. Whitesides GM, Mathias JP, Seto CT (1991) Science 254:1312. doi:https://doi.org/10.1126/science.1962191

    Article  CAS  Google Scholar 

  20. O’Hare D (1991) In: Bruce DW, O’Hare D (eds) Inorganic materials. Wiley, New York, p 167

  21. Pavan PC, Crepaldi EL, Valim JB (2000) J Colloid Interface Sci 229:346. doi:https://doi.org/10.1006/jcis.2000.7031

    Article  CAS  Google Scholar 

  22. Dèkány I, Haraszti T (1996) Colloid Surf A 123–124:391. doi:https://doi.org/10.1016/S0927-7757(96)03804-6

    Google Scholar 

  23. Pavan PC, Gomes GA, Valim JB (1998) Microporous Mesoporous Mater 21:659. doi:https://doi.org/10.1016/S1387-1811(98)00054-7

    Article  CAS  Google Scholar 

  24. Pavan PC, Crepaldi EL, Gomes GA, Valim JB (1999) Colloid Surf A 154:399. doi:https://doi.org/10.1016/S0927-7757(98)00847-4

    Article  CAS  Google Scholar 

  25. Ulibarri MA, Pavlovic I, Barriga C, Hermosín MC, Cornejo J (2001) Appl Clay Sci 18:17. doi:https://doi.org/10.1016/S0169-1317(00)00026-0

    Article  CAS  Google Scholar 

  26. Anbarasan R, Lee WD, Im SS (2005) Bull Mater Sci 28:145. doi:https://doi.org/10.1007/BF02704234

    Article  CAS  Google Scholar 

  27. Colvin VL, Goldstein AN, Alivisatos AP (1992) J Am Chem Soc 114:5221. doi:https://doi.org/10.1021/ja00039a038

    Article  CAS  Google Scholar 

  28. Fendler JH, Meldrum FC (1995) Adv Mater 7:607. doi:https://doi.org/10.1002/adma.19950070703

    Article  CAS  Google Scholar 

  29. Messersmith PB, Stupp SI (1995) Chem Mater 7:454. doi:https://doi.org/10.1021/cm00051a004

    Article  CAS  Google Scholar 

  30. Dèkány I, Berger F, Imrik K, Lagaly G (1997) Colloid Polym Sci 275:681

    Article  Google Scholar 

  31. Clearfield A, Kieke M, Kwan J, Colon JL, Wang RC (1991) J Incl Phenom Mol Recognit Chem 11:361. doi:https://doi.org/10.1007/BF01041414

    Article  CAS  Google Scholar 

  32. Labajos FM, Rives V, Ulibarri MA (1992) J Mater Sci 27:1546. doi:https://doi.org/10.1007/BF00542916

    Article  CAS  Google Scholar 

  33. Kloprogge JT, Hickey L, Frost RL (2002) J Mater Sci Lett 21:603. doi:https://doi.org/10.1023/A:1015655018529

    Article  CAS  Google Scholar 

  34. Takagi K, Sichi T, Usami H, Sawaki Y (1993) J Am Chem Soc 115:4339. doi:https://doi.org/10.1021/ja00063a060

    Article  CAS  Google Scholar 

  35. Yang K, Zhu L, Xing B (2007) Environ Pollut 145:571. doi:https://doi.org/10.1016/j.envpol.2006.04.024

    Article  CAS  Google Scholar 

  36. Meyn M, Beneke K, Lagaly G (1990) Inorg Chem 29:5201

    Article  CAS  Google Scholar 

  37. You Y, Zhao H, Vance GF (2002) Colloids Surf A Physicochem Eng Aspects 205:161. doi:https://doi.org/10.1016/S0927-7757(01)01137-2

    Article  CAS  Google Scholar 

  38. Zhao H, Nagy KL (2004) J Colloid Interface Sci 274:613. doi:https://doi.org/10.1016/j.jcis.2004.03.055

    Article  CAS  Google Scholar 

  39. Xu ZP, Braterman PS (2007) J Phys Chem 13:268

    Google Scholar 

  40. Pesic L, Salipurovic S, Markovic V, Vucelic D, Kagunya W, Jones W (1992) J Mater Chem 2:1069. doi:https://doi.org/10.1039/jm9920201069

    Article  CAS  Google Scholar 

  41. Newman SP, Jones W (1998a) N J Chem 22:105. doi:https://doi.org/10.1039/a708319j

    Article  CAS  Google Scholar 

  42. Drezdzon MA (1988) Inorg Chem 27:4628. doi:https://doi.org/10.1021/ic00298a024

    Article  CAS  Google Scholar 

  43. Trujillano R, Holgado MJ, González JL, Rives V (2005) Solid State Sci 7:931. doi:https://doi.org/10.1016/j.solidstatesciences.2005.03.003

    Article  CAS  Google Scholar 

  44. Hussein MZB, Zainal Z, Ming CY (2000) J Mater Sci Lett 19:879. doi:https://doi.org/10.1023/A:1006745716997

    Article  CAS  Google Scholar 

  45. Crepaldi EL, Pavan PC, Valim JB (1999) Chem Commun (Camb) 155. doi:https://doi.org/10.1039/a808567f

  46. Miyata S (1983) Clays Clay Miner 31:305. doi:https://doi.org/10.1346/CCMN.1983.0310409

    Article  CAS  Google Scholar 

  47. Boehm H-P, Steinle J, Vieweger C (1977) Angew Chem 89:259. doi:https://doi.org/10.1002/ange.19770890416

    Article  CAS  Google Scholar 

  48. Crepaldi EL, Pavan PC, Valim JB (2000) J Mater Chem 10:1337. doi:https://doi.org/10.1039/a909436i

    Article  CAS  Google Scholar 

  49. Venugopal BR, Shivakumara G, Rajamathi M (2006) J Colloid Interface Sci 32:141

    CAS  Google Scholar 

  50. You Y, Zhao H, Vance GF (2002) J Mater Chem 12:907. doi:https://doi.org/10.1039/b106811c

    Article  CAS  Google Scholar 

  51. Dimotakis ED, Pinnavaia TJ (1990) Inorg Chem 29:2393. doi:https://doi.org/10.1021/ic00338a001

    Article  CAS  Google Scholar 

  52. Miyata S, Okada A (1977) Clays Clay Miner 25:14. doi:https://doi.org/10.1346/CCMN.1977.0250103

    Article  Google Scholar 

  53. Sato T, Mikako T, Endo T, Shimada M (1987) J Chem Technol Biotechnol 39:275

    Article  CAS  Google Scholar 

  54. Chibwe K, Jones W (1989) J Chem Soc Chem Commun 926. doi:https://doi.org/10.1039/c39890000926

  55. Chen W, Qu B (2003) Chem Mater 15:3208. doi:https://doi.org/10.1021/cm030044h

    Article  CAS  Google Scholar 

  56. Bouraada M, Lafjah M, Ouali MS, de Menorval LC (2008) J Hazard Mater 153:911. doi:https://doi.org/10.1016/j.jhazmat.2007.09.076

    Article  CAS  Google Scholar 

  57. Costa FR, Leuteritz A, Wagenknecht U, Jehnichen D, Häusßler L, Heinrich G (2008) Appl Clay Sci 38:153. doi:https://doi.org/10.1016/j.clay.2007.03.006

    Article  CAS  Google Scholar 

  58. Hansen HCB, Taylor RM (1991) Clay Miner 26:311. doi:https://doi.org/10.1180/claymin.1991.026.3.02

    Article  CAS  Google Scholar 

  59. Carlino S, Hudson MJ (1994) J Mater Chem 4:99. doi:https://doi.org/10.1039/jm9940400099

    Article  CAS  Google Scholar 

  60. Carlino S, Hudson MJ, Husain SW, Knowles JA (1996) Solid State Ionics 84:117. doi:https://doi.org/10.1016/S0167-2738(96)83014-1

    Article  CAS  Google Scholar 

  61. Nhlapo N, Motumi T, Landman E, Verryn SMC, Focke WW (2008) J Mater Sci 43:1033. doi:https://doi.org/10.1007/s10853-007-2251-0

    Article  CAS  Google Scholar 

  62. Anbarasan R, Lee WD, Im SS (2008) J Serb Chem Soc 73:321. doi:https://doi.org/10.2298/JSC0803321A

    Article  CAS  Google Scholar 

  63. Vaccari A (1998) Catal Today 41:53. doi:https://doi.org/10.1016/S0920-5861(98)00038-8

    Article  CAS  Google Scholar 

  64. Evans DG, Duan X (2006) Chem Commun (Camb) 485. doi:https://doi.org/10.1039/b510313b

  65. Khan AI, O’Hare D (2002) J Mater Chem 12:3191. doi:https://doi.org/10.1039/b204076j

    Article  CAS  Google Scholar 

  66. Leroux F, Besse J-P (2001) Chem Mater 13:3507. doi:https://doi.org/10.1021/cm0110268

    Article  CAS  Google Scholar 

  67. Fischer H (2003) Mater Sci Eng C 23:763. doi:https://doi.org/10.1016/j.msec.2003.09.148

    Article  CAS  Google Scholar 

  68. Costa FR, Abdel-Goad M, Wagenknecht U, Heinrich G (2005) Polymer (Guildf) 46:4447. doi:https://doi.org/10.1016/j.polymer.2005.02.027

    Article  CAS  Google Scholar 

  69. Costa FR, Wagenknecht U, Jehnichen U, Abdel-Goad M, Heinrich G (2006) Polymer (Guildf) 47:1649. doi:https://doi.org/10.1016/j.polymer.2005.12.011

    Article  CAS  Google Scholar 

  70. Wang B, Zhang H, Evans DG, Duan X (2005) J Mater Chem Phys 92:190. doi:https://doi.org/10.1016/j.matchemphys.2005.01.013

    Article  CAS  Google Scholar 

  71. Choy J-H, Kwak S-Y, Park J-S, Jeong Y-J, Portier J (1999) J Am Chem Soc 121:1399. doi:https://doi.org/10.1021/ja981823f

    Article  CAS  Google Scholar 

  72. Carlino S, Hudson MJ (1995) J Mater Chem 5:1433. doi:https://doi.org/10.1039/jm9950501433

    Article  CAS  Google Scholar 

  73. Adachi-Pagano M, Forano C, Besse J-P (2000) Chem Commun (Camb) 91. doi:https://doi.org/10.1039/a908251d

  74. Reichle WT (1985) J Catal 94:547. doi:https://doi.org/10.1016/0021-9517(85)90219-2

    Article  CAS  Google Scholar 

  75. Rey F, Fornés V, Rojo JM (1992) J Chem Soc Faraday Trans 88:2233. doi:https://doi.org/10.1039/ft9928802233

    Article  CAS  Google Scholar 

  76. Frost RL, Ding Z, Martens WN, Kloprogge JT (2003) J Therm Anal Calorim 71:429. doi:https://doi.org/10.1023/A:1022835305846

    Article  CAS  Google Scholar 

  77. Kandare E, Hossenlopp JM (2006) Inorg Chem 45:3766. doi:https://doi.org/10.1021/ic060071k

    Article  CAS  Google Scholar 

  78. Coates J (2000) In: Meyer RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, p 10815

  79. Perez-Ramirez J, Mul G, Kapteijn F, Moulijn JA (2001) J Mater Sci 11:821

    CAS  Google Scholar 

  80. Kloprogge JT, Frost RL (1999) Phys Chem Chem Phys 1:1641. doi:https://doi.org/10.1039/a808496c

    Article  CAS  Google Scholar 

  81. Kloprogge JT, Frost RL (2000) Appl Catal A 204:269. doi:https://doi.org/10.1016/S0926-860X(00)00697-9

    Article  CAS  Google Scholar 

  82. Rajamathi JT, Ravishankar N, Rajamathi M (2005) Solid State Sci 7:195. doi:https://doi.org/10.1016/j.solidstatesciences.2004.10.034

    Article  CAS  Google Scholar 

  83. Nakagaki M, Yokoyama S (1985) J Pharm Sci 74:1047

    Article  CAS  Google Scholar 

  84. Bethell D, Fessey RE, Namwindwa E, Robetrts DW (2001) J Chem Soc Perkin Trans 2:1489. doi:https://doi.org/10.1039/b102957f

  85. Angarska JK, Tachev KD, Kralchevsky PA, Mehreteab A, Broze G (1998) J Colloid Interface Sci 200:31. doi:https://doi.org/10.1006/jcis.1997.5334

    Article  CAS  Google Scholar 

  86. Crepaldi EL, Tronto J, Cardoso LP, Valim JB (2002) Colloid Surf A 211:103. doi:https://doi.org/10.1016/S0927-7757(02)00233-9

    Article  CAS  Google Scholar 

  87. Parker ML, Milestone NB, Newman RH (1995) Ind Eng Chem Res 34:1196. doi:https://doi.org/10.1021/ie00043a023

    Article  CAS  Google Scholar 

  88. Bontchev RP, Liu S, Krumhansl JL, Voigt J, Nenoff TM (2003) Chem Mater 15:3669. doi:https://doi.org/10.1021/cm034231r

    Article  CAS  Google Scholar 

  89. Bish DL (1980) Bull Mineral (Paris) 103:170

    CAS  Google Scholar 

  90. Iyi N, Matsumoto T, Kaneko Y, Kitamura K (2004) Chem Mater 16:2926. doi:https://doi.org/10.1021/cm049579g

    Article  CAS  Google Scholar 

  91. Iyi N, Okamoto K, Kaneko Y, Matsumoto T (2005) Chem Lett 34:932. doi:https://doi.org/10.1246/cl.2005.932

    Article  CAS  Google Scholar 

  92. Jobbágy M, Regazoni AE (2004) J Colloid Interface Sci 275:345. doi:https://doi.org/10.1016/j.jcis.2004.01.082

    Article  CAS  Google Scholar 

  93. Hu G, O’Hare D (2005) J Am Chem Soc 127:17808. doi:https://doi.org/10.1021/ja0549392

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. C. Harnisch of the Leibniz-Institut für Polymerforschung, Dresden e.V. for the Py/GC/MS analysis. Financial support for this research, from the Institutional Research Development Programme (IRDP), the South African Cooperation Fund for Scientific and Technological Developments (NEPAD), the THRIP program of the Department of Trade and Industry and the National Research Foundation of South Africa, as well as Xyris Technology CC, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter W. Focke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moyo, L., Nhlapo, N. & Focke, W.W. A critical assessment of the methods for intercalating anionic surfactants in layered double hydroxides. J Mater Sci 43, 6144–6158 (2008). https://doi.org/10.1007/s10853-008-2935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2935-0

Keywords

Navigation