Skip to main content
Log in

Tobacco Plant: A Novel and Promising Heterologous Bioreactor for the Production of Recombinant Bovine Chymosin

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The natural source of chymosin, a key enzyme in the dairy industry, is insufficient for rapidly growing cheese industries. Large-scale production of recombinant proteins in heterologous hosts provides an efficient alternative solution. Here, the codon-optimized synthetic prochymosin gene, which has a CAI index of 0.926, was subcloned from a cloning vector (pUC57-bCYM) into the pBI121 vector, resulting in the construct named pBI121-bCYM. CAI ranges from 0 to 1 and higher CAI improves gene expression in heterologous hosts. The overexpression of the prochymosin gene was under the control of constitutive CaMV 35S promoter and NOS terminator and was transferred into the tobacco via A. tumefaciens strain LBA4404. Explant type, regeneration method, inoculation temperature, cell density (OD600) of Agrobacterium for inoculation, and acetosyringone concentration were leaf explants, direct somatic embryogenesis, 19 °C, 0.1, and 100 µM, respectively. The successful integration and expression of the prochymosin gene, along with the bioactivity of recombinant chymosin, were confirmed by PCR, RT-PCR, and milk coagulation assay, respectively. Overall, this study reports the first successful overexpression of the codon-optimized prochymosin form of the bovine chymosin enzyme in the tobacco via indirect transformation. Production of recombinant bovine chymosin in plants can be an easy-to-scale-up, safe, and inexpensive platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not available.

References

  1. Alavi, F., & Momen, S. (2020). Aspartic proteases from thistle flowers: Traditional coagulants used in the modern cheese industry. International Dairy Journal, 107, 104709.

    Article  CAS  Google Scholar 

  2. Kumar, A., Grover, S., Sharma, J., & Batish, V. (2010). Chymosin and other milk coagulants: Sources and biotechnological interventions. Critical Reviews in Biotechnology, 30, 243–258.

    Article  CAS  PubMed  Google Scholar 

  3. Shah, M. A., Mir, S. A., & Paray, M. A. (2014). Plant proteases as milk-clotting enzymes in cheesemaking: A review. Dairy Science & Technology, 94, 5–16.

    Article  CAS  Google Scholar 

  4. Fernández-Salguero, J., Prados, F., Calixto, F., Vioque, M., Sampaio, P., & Tejada, L. (2003). Use of recombinant cyprosin in the manufacture of ewe’s milk cheese. Journal of Agricultural and Food Chemistry, 51, 7426–7430.

    Article  PubMed  Google Scholar 

  5. Menacho-Melgar, R., Ye, Z., Moreb, E. A., Yang, T., Efromson, J. P., Decker, J. S., Wang, R., & Lynch, M. D. (2020). Scalable, two-stage, autoinduction of recombinant protein expression in E. coli utilizing phosphate depletion. Biotechnology and Bioengineering, 117, 2715–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Packiam, K. A. R., Ramanan, R. N., Ooi, C. W., Krishnaswamy, L., & Tey, B. T. (2020). Stepwise optimization of recombinant protein production in Escherichia coli utilizing computational and experimental approaches. Applied Microbiology and Biotechnology, 104, 3253–3266.

    Article  CAS  PubMed  Google Scholar 

  7. Pijlman, G. P., Grose, C., Hick, T. A., Breukink, H. E., van den Braak, R., Abbo, S. R., Geertsema, C., van Oers, M. M., Martens, D. E., & Esposito, D. (2020). Relocation of the attTn7 transgene insertion site in bacmid DNA enhances baculovirus genome stability and recombinant protein expression in insect cells. Viruses, 12, 1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grose, C., Putman, Z., & Esposito, D. (2021). A review of alternative promoters for optimal recombinant protein expression in Baculovirus-infected insect cells. Protein Expression and Purification, 186, 105924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pourcel, L., Buron, F., Arib, G., Le Fourn, V., Regamey, A., Bodenmann, I., Girod, P. A., & Mermod, N. (2020). Influence of cytoskeleton organization on recombinant protein expression by CHO cells. Biotechnology and Bioengineering, 117, 1117–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frei, T., Cella, F., Tedeschi, F., Gutiérrez, J., Stan, G.-B., Khammash, M., & Siciliano, V. (2020). Characterization and mitigation of gene expression burden in mammalian cells. Nature Communications, 11, 1–14.

    Article  Google Scholar 

  11. Ntana, F., Mortensen, U. H., Sarazin, C., & Figge, R. (2020). Aspergillus: A powerful protein production platform. Catalysts, 10, 1064.

    Article  CAS  Google Scholar 

  12. Liu, Y., Li, Y., Tong, S., Yuan, M., Wang, X., Wang, J., & Fan, Y. (2020). Expression of a Beauveria bassiana chitosanase (BbCSN-1) in Pichia pastoris and enzymatic analysis of the recombinant protein. Protein Expression and Purification, 166, 105519.

    Article  CAS  PubMed  Google Scholar 

  13. Burnett, M. J., & Burnett, A. C. (2020). Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants, People, Planet, 2, 121–132.

    Article  Google Scholar 

  14. Shanmugaraj, B., I Bulaon, C. J., & Phoolcharoen, W. (2020). Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants, 9, 842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rebelo, B. A., Santos, R. B., Ascenso, O. S., Nogueira, A. C., Lousa, D., Abranches, R., & Ventura, M. R. (2020). Synthesis and biological effects of small molecule enhancers for improved recombinant protein production in plant cell cultures. Bioorganic Chemistry, 94, 103452.

    Article  CAS  PubMed  Google Scholar 

  16. Fajardo, C., De Donato, M., Carrasco, R., Martínez-Rodríguez, G., Mancera, J. M., & Fernández-Acero, F. J. (2020). Advances and challenges in genetic engineering of microalgae. Reviews in Aquaculture, 12, 365–381.

    Article  Google Scholar 

  17. Tran, N. T., & Kaldenhoff, R. (2020). Achievements and challenges of genetic engineering of the model green alga Chlamydomonas reinhardtii. Algal Research, 50, 101986.

    Article  Google Scholar 

  18. Mohanty, A. K., Mukhopadhyay, U. K., Grover, S., & Batish, V. K. (1999). Bovine chymosin: Production by rDNA technology and application in cheese manufacture. Biotechnology Advances, 17, 205–217.

    Article  CAS  PubMed  Google Scholar 

  19. Gilliland, G. L., Winborne, E. L., Nachman, J., & Wlodawer, A. (1990). The three-dimensional structure of recombinant bovine chymosin at 2.3 Å resolution. Proteins: Structure. Function, and Bioinformatics, 8, 82–101.

    Article  CAS  Google Scholar 

  20. Noseda, D. G., Recúpero, M. N., Blasco, M., Ortiz, G. E., & Galvagno, M. A. (2013). Cloning, expression and optimized production in a bioreactor of bovine chymosin B in Pichia (Komagataella) pastoris under AOX1 promoter. Protein Expression and Purification, 92, 235–244.

    Article  CAS  PubMed  Google Scholar 

  21. Wei, Z.-Y., Zhang, Y.-Y., Wang, Y.-P., Fan, M.-X., Zhong, X.-F., Xu, N., Lin, F., & Xing, S.-C. (2016). Production of bioactive recombinant bovine chymosin in tobacco plants. International Journal of Molecular Sciences, 17, 624.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fischer, R., Stoger, E., Schillberg, S., Christou, P., & Twyman, R. M. (2004). Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 7, 152–158.

    Article  CAS  PubMed  Google Scholar 

  23. Sindarovska, Y. R., Gerasymenko, I. M., Sheludko, Y. V., Olevinskaya, Z. M., Spivak, N. Y., & Kuchuk, N. V. (2010). Production of human interferon alfa 2b in plants of Nicotiana excelsior by Agrobacterium-mediated transient expression. Tsitologiia i Genetika, 44, 60–64.

    CAS  PubMed  Google Scholar 

  24. Larrick, J. W., & Thomas, D. W. (2001). Producing proteins in transgenic plants and animals. Current Opinion in Biotechnology, 12, 411–418.

    Article  CAS  PubMed  Google Scholar 

  25. Azizi-Dargahlou, S., & Ahmadabadi, M. (2022). Antimicrobial peptides and their heterologous production in plant systems. New Cellular and Molecular Biotechnology Journal, 12, 9–22.

    Google Scholar 

  26. Norkiene, M., & Gedvilaite, A. (2012). Influence of codon bias on heterologous production of human papillomavirus type 16 major structural protein L1 in yeast. The Scientific World Journal. https://doi.org/10.1100/2012/979218

    Article  PubMed  PubMed Central  Google Scholar 

  27. Elena, C., Ravasi, P., Castelli, M. E., Peirú, S., & Menzella, H. G. (2014). Expression of codon optimized genes in microbial systems: Current industrial applications and perspectives. Frontiers in Microbiology, 5, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sharp, P. M., & Li, W.-H. (1987). The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 15, 1281–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Puigbò, P., Bravo, I. G., & Garcia-Vallve, S. (2008). CAIcal: A combined set of tools to assess codon usage adaptation. Biology Direct, 3, 1–8.

    Article  Google Scholar 

  30. Azizi Dargahlou, S., Ahmadabadi, M., & Valizadeh Kamran, R. (2022). Codon optimization and cloning of bovine prochymosin gene for proper expression in tobacco plant. Genetic Engineering and Biosafety Journal, 10, 225–236.

    Google Scholar 

  31. Azizi-Dargahlou, S., & Pouresmaeil, M. (2023). Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Molecular Biotechnology. https://doi.org/10.1007/s12033-023-00788-x

    Article  PubMed  Google Scholar 

  32. Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., Gai, J., & Li, Y. (2017). Optimization of Agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8, 246.

    PubMed  PubMed Central  Google Scholar 

  33. Tiwari, M., Mishra, A. K., & Chakrabarty, D. (2022). Agrobacterium-mediated gene transfer: Recent advancements and layered immunity in plants. Planta, 256, 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shreni Agrawal, E. R. (2022). A Review: Agrobacterium-mediated gene transformation to increase plant productivity. Journal of Phytopharmatics, 11, 111–117.

    Google Scholar 

  35. Che, P., Anand, A., Wu, E., Sander, J. D., Simon, M. K., Zhu, W., Sigmund, A. L., Zastrow-Hayes, G., Miller, M., & Liu, D. (2018). Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnology Journal, 16, 1388–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohammed, S., Abd Samad, A., & Rahmat, Z. (2019). Agrobacterium-mediated transformation of rice: Constraints and possible solutions. Rice Science, 26, 133–146.

    Article  Google Scholar 

  37. Anand, A., Bass, S. H., Wu, E., Wang, N., McBride, K. E., Annaluru, N., Miller, M., Hua, M., & Jones, T. J. (2018). An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Molecular Biology, 97, 187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song, G.-Q., Prieto, H., & Orbovic, V. (2019). Agrobacterium-mediated transformation of tree fruit crops: Methods, progress, and challenges. Frontiers in Plant Science, 10, 226.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Veillet, F., Perrot, L., Chauvin, L., Kermarrec, M.-P., Guyon-Debast, A., Chauvin, J.-E., Nogué, F., & Mazier, M. (2019). Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. International Journal of Molecular Sciences, 20, 402.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Javied, M., Ashfaq, N., Haider, M., Fatima, F., Ali, Q., Ali, A., & Malik, A. (2021). Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) using dmo gene for enhanced tolerance against dicamba pesticide. Biological and Clinical Sciences Research Journal, 2021, e009–e009.

    Article  Google Scholar 

  41. Jiang, H., Meng, F., Lu, D., Chen, Y., Luo, G., Chen, Y., Chen, J., Chen, C., Zhang, X., & Su, D. (2022). High-throughput fast cloning technology: A low-cost method for parallel cloning. PLoS ONE, 17, e0273873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Engebrecht, J., Brent, R., & Kaderbhai, M. A. (1991). Minipreps of plasmid DNA. Current Protocols in Molecular Biology, 15, 1.6.1-1.6.10.

    Article  Google Scholar 

  43. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  44. Fu, Q., Li, C., Tang, M., Tao, Y.-B., Pan, B.-Z., Zhang, L., Niu, L., He, H., Wang, X., & Xu, Z.-F. (2015). An efficient protocol for Agrobacterium-mediated transformation of the biofuel plant Jatropha curcas by optimizing kanamycin concentration and duration of delayed selection. Plant Biotechnology Reports, 9, 405–416.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yadav, M., Chaudhary, D., Sainger, M., & Jaiwal, P. K. (2010). Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell. Tissue and Organ Culture (PCTOC), 103, 377–386.

    Article  CAS  Google Scholar 

  46. Salas, M., Park, S., Srivatanakul, M., & Smith, R. (2001). Temperature influence on stable T-DNA integration in plant cells. Plant Cell Reports, 20, 701–705.

    Article  CAS  Google Scholar 

  47. Mortensen, S., Cole, L. F., Bernal-Franco, D., Sathitloetsakun, S., Cram, E. J., & Lee-Parsons, C. W. (2022). EASI transformation protocol: An agrobacterium-mediated transient transformation protocol for Catharanthus roseus seedlings. Catharanthus roseus: Methods and protocols (pp. 249–262). Springer.

    Chapter  Google Scholar 

  48. Kauser, N., Khan, S., Mohammadi, A., Ghareyazil, B., Uliaie, E. D., & Darvishrohani, B. (2016). Agrobactrium mediated transformation and direct shoot regeneration in Iranian Tomato (Solanum lycopersicum L.) cultivar Falat-CH. Pakistan Journal of Botany, 48, 2489–2498.

    Google Scholar 

  49. Muppala, S., Gudlavalleti, P. K., Dasari, P., Pagidoju, S., Malireddy, K. R., & Puligundla, S. K. (2022). Agrobacterium mediated transformation of ABA biosynthetic pathway coding genes for enhanced drought tolerance in Nicotiana tabacum. Journal of Pharmacognosy and Phytochemistry, 11, 244–249.

    Article  CAS  Google Scholar 

  50. Solís-Ramos, L. Y., Ortiz-Pavón, J. C., Andrade-Torres, A., Porras-Murillo, R., Angulo, A. B., & Serna, ECdl. (2019). Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris) var Brunca. Revista de Biología Tropical, 67, 83–94.

    Article  Google Scholar 

  51. Abdallah, N. A., Shah, D., Abbas, D., & Madkour, M. (2010). Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops, 1, 344–350.

    Article  PubMed  Google Scholar 

  52. Li, J., Wang, S., Yu, J., Wang, L., & Zhou, S. (2013). A modified CTAB protocol for plant DNA extraction. Chinese Bulletin of Botany, 48, 72.

    Article  Google Scholar 

  53. Azizi-Dargahlou, S., Ahmadabadi, M., & Valizadeh Kamran, R. (2023). Biolistic transformation and expression of functional chymosin from a codon-optimized synthetic bovine gene in tobacco Plants. Journal of Medicinal plants and By-product, 12, 209–215.

    Google Scholar 

  54. Liu, W.-G., Wang, Y.-P., Zhang, Z.-J., Wang, M., Lv, Q.-X., Liu, H.-W., Meng, L.-C., & Lu, M. (2017). Generation and characterization of caprine chymosin in corn seed. Protein Expression and Purification, 135, 78–82.

    Article  CAS  PubMed  Google Scholar 

  55. Noor, F., Ashfaq, U. A., Bakar, A., Qasim, M., Masoud, M. S., Alshammari, A., Alharbi, M., & Riaz, M. S. (2023). Identification and characterization of codon usage pattern and influencing factors in HFRS-causing hantaviruses. Frontiers in Immunology, 14, 1131647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fu, H., Liang, Y., Zhong, X., Pan, Z., Huang, L., Zhang, H., Xu, Y., Zhou, W., & Liu, Z. (2020). Codon optimization with deep learning to enhance protein expression. Scientific Reports, 10, 17617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vasbinder, A., Rollema, H., Bot, A., & De Kruif, C. (2003). Gelation mechanism of milk as influenced by temperature and pH; studied by the use of transglutaminase cross-linked casein micelles. Journal of Dairy Science, 86, 1556–1563.

    Article  CAS  PubMed  Google Scholar 

  58. Vallejo, J. A., Ageitos, J. M., Poza, M., & Villa, T. G. (2008). Cloning and expression of buffalo active chymosin in Pichia pastoris. Journal of Agricultural and Food Chemistry, 56, 10606–10610.

    Article  CAS  PubMed  Google Scholar 

  59. Al-Zoreky, N. S., & Almathen, F. S. (2021). Using recombinant camel chymosin to make white soft cheese from camel milk. Food Chemistry, 337, 127994.

    Article  CAS  PubMed  Google Scholar 

  60. Ersöz, F., & İnan, M. (2019). Large-scale production of yak (Bos grunniens) chymosin A in Pichia pastoris. Protein Expression and Purification, 154, 126–133.

    Article  PubMed  Google Scholar 

  61. Aboulnaga, E. (2019). Cloning and expression of camel pro-chymosin encoding gene in E. coli and characterization of the obtained active enzyme. Journal of Food and Dairy Sciences, 10, 71–78.

    Article  Google Scholar 

  62. Tian, L., & Sun, S. S. (2011). A cost-effective ELP-intein coupling system for recombinant protein purification from plant production platform. PLoS ONE, 6, e24183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Park, K. Y., & Wi, S. J. (2016). Potential of plants to produce recombinant protein products. Journal of Plant Biology, 59, 559–568.

    Article  CAS  PubMed  Google Scholar 

  64. Hood, E. E., & Howard, J. A. (2014). Commercial plant-produced recombinant avidin. Commercial plant-produced recombinant protein products: Case studies (pp. 15–25). Springer.

    Chapter  Google Scholar 

  65. Bailey, M., Woodard, S., Callaway, E., Beifuss, K., Magallanes-Lundback, M., Lane, J., Horn, M., Mallubhotla, H., Delaney, D., & Ward, M. (2004). Improved recovery of active recombinant laccase from maize seed. Applied Microbiology and Biotechnology, 63, 390–397.

    Article  CAS  PubMed  Google Scholar 

  66. Gustafsson, C., Govindarajan, S., & Minshull, J. (2004). Codon bias and heterologous protein expression. Trends in Biotechnology, 22, 346–353.

    Article  CAS  PubMed  Google Scholar 

  67. Hershberg, R., & Petrov, D. A. (2008). Selection on codon bias. Annual Review of Genetics, 42, 287–299.

    Article  CAS  PubMed  Google Scholar 

  68. Espinoza-Molina, J. A., Acosta-Muniz, C. H., Sepulveda, D. R., Zamudio-Flores, P. B., & Rios-Velasco, C. (2016). Codon optimization of the “Bos taurus chymosin" gene for the production of recombinant chymosin in Pichia pastoris. Molecular Biotechnology, 58, 657–664.

    Article  CAS  PubMed  Google Scholar 

  69. Gouy, M., & Gautier, C. (1982). Codon usage in bacteria: Correlation with gene expressivity. Nucleic Acids Research, 10, 7055–7074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Duret, L., & Mouchiroud, D. (1999). Expression pattern and surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proceedings of the National Academy of Sciences USA, 96, 4482–4487.

    Article  CAS  Google Scholar 

  71. Hu, H., Dong, B., Fan, X., Wang, M., Wang, T., & Liu, Q. (2023). Mutational bias and natural selection driving the synonymous codon usage of single-exon genes in rice (Oryza sativa L.). Rice, 16, 1–13.

    Article  Google Scholar 

  72. Feng, Z., Zhang, L., Han, X., & Zhang, Y. (2010). Codon optimization of the calf prochymosin gene and its expression in Kluyveromyces lactis. World Journal of Microbiology and Biotechnology, 26, 895–901.

    Article  CAS  Google Scholar 

  73. Luo, F., Jiang, W. H., Yang, Y. X., Li, J., & Jiang, M. F. (2016). Cloning and expression of yak active chymosin in Pichia pastoris. Asian-Australasian Journal of Animal Sciences, 29, 1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cardoza, R., Gutiérrez, S., Ortega, N., Colina, A., Casqueiro, J., & Martín, J. (2003). Expression of a synthetic copy of the bovine chymosin gene in Aspergillus awamori from constitutive and pH-regulated promoters and secretion using two different pre-pro sequences. Biotechnology and Bioengineering, 83, 249–259.

    Article  CAS  PubMed  Google Scholar 

  75. Khelifa, M., Massé, D., Blanc, S., & Drucker, M. (2010). Evaluation of the minimal replication time of Cauliflower mosaic virus in different hosts. Virology, 396, 238–245.

    Article  CAS  PubMed  Google Scholar 

  76. Krasnyanski, S. F., Sandhu, J., Domier, L. L., Buetow, D. E., & Korban, S. S. (2001). Effect of an enhanced CaMV 35S promoter and a fruit-specific promoter on uida gene expression in transgenic tomato plants. In Vitro Cellular & Developmental Biology-Plant, 37, 427–433.

    Article  CAS  Google Scholar 

  77. Tepfer, M., Gaubert, S., Leroux-Coyau, M., Prince, S., & Houdebine, L.-M. (2004). Transient expression in mammalian cells of transgenes transcribed from the Cauliflower mosaic virus 35S promoter. Environmental Biosafety Research, 3, 91–97.

    Article  CAS  PubMed  Google Scholar 

  78. Sun, L., Cai, H., Xu, W., Hu, Y., & Lin, Z. (2002). CaMV 35S promoter directs β-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus. Molecular Biotechnology, 20, 239–244.

    Article  CAS  PubMed  Google Scholar 

  79. Pouresmaeil, M., Dall’Ara, M., Salvato, M. S., Turri, V., & Ratti, C. (2023). Cauliflower mosaic virus: Virus-host interactions and its uses in biotechnology and medicine. Virology. https://doi.org/10.1016/j.virol.2023.02.008

    Article  PubMed  Google Scholar 

  80. Jiang, P., Zhang, K., Ding, Z., He, Q., Li, W., Zhu, S., Cheng, W., Zhang, K., & Li, K. (2018). Characterization of a strong and constitutive promoter from the Arabidopsis serine carboxypeptidase-like gene AtSCPL30 as a potential tool for crop transgenic breeding. BMC Biotechnology, 18, 1–13.

    Article  CAS  Google Scholar 

  81. Bandopadhyay, R., Haque, I., Singh, D., & Mukhopadhyay, K. (2010). Levels and stability of expression of transgenes. Transgenic Crop Plants. https://doi.org/10.1007/978-3-642-04809-8_5

    Article  PubMed Central  Google Scholar 

  82. Odell, J. T., Nagy, F., & Chua, N. H. (1985). Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 313, 810–812.

    Article  CAS  PubMed  Google Scholar 

  83. Battraw, M. J., & Hall, T. C. (1990). Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Molecular Biology, 15, 527–538.

    Article  CAS  PubMed  Google Scholar 

  84. Benfey, P. N., Ren, L., & Chua, N. H. (1990). Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO Journal, 9, 1677–1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pratiwi, R. A., & Surya, M. I. (2020). Agrobacterium-mediated transformation. In: Genetic transformation in crops. IntechOpen.

  86. Shou, H., Frame, B. R., Whitham, S. A., & Wang, K. (2004). Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Molecular Breeding, 13, 201–208.

    Article  CAS  Google Scholar 

  87. Travella, S., Ross, S., Harden, J., Everett, C., Snape, J., & Harwood, W. (2005). A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Reports, 23, 780–789.

    Article  CAS  PubMed  Google Scholar 

  88. Gao, C., Long, D., Lenk, I., & Nielsen, K. K. (2008). Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment. Plant Cell Reports, 27, 1601–1609.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, Y., Yin, X., Yang, A., Li, G., & Zhang, J. (2005). Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica, 144, 11–22.

    Article  CAS  Google Scholar 

  90. Raza, G., Singh, M. B., & Bhalla, P. L. (2019). Somatic embryogenesis and plant regeneration from commercial soybean cultivars. Plants (Basel), 9, 38.

    Article  PubMed  Google Scholar 

  91. Stolarz, A., Macewicz, J., & Lörz, H. (1991). Direct somatic embryogenesis and plant regeneration from leaf explants of Nicotiana tabacum L. Journal of Plant Physiology, 137, 347–357.

    Article  CAS  Google Scholar 

  92. Gill, R., & Saxena, P. K. (1993). Somatic embryogenesis in Nicotiana tabacum L.: Induction by thidiazuron of direct embryo differentiation from cultured leaf discs. Plant Cell Reports, 12, 154–159.

    Article  CAS  PubMed  Google Scholar 

  93. Pathi, K. M., Tula, S., & Tuteja, N. (2013). High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco. Plant Signaling & Behavior, 8, e24354.

    Article  Google Scholar 

  94. Windels, P., De Buck, S., & Depicker, A. (2008) Agrobacterium tumefaciens-mediated transformation: patterns of T-DNA integration into the host genome. Agrobacterium from biology to biotechnology, 441–481.

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by the cooperation of all authors. All authors revised the manuscript critically and also read and approved the final version.

Corresponding author

Correspondence to Shahnam Azizi-Dargahlou.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not available.

Consent to Participate

Not available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi-Dargahlou, S., Pouresmaeil, M. & Ahmadabadi, M. Tobacco Plant: A Novel and Promising Heterologous Bioreactor for the Production of Recombinant Bovine Chymosin. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-023-01043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-01043-z

Keywords

Navigation