Skip to main content
Log in

Codon optimization of the calf prochymosin gene and its expression in Kluyveromyces lactis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chymosin as an important industrial enzyme widely used in cheese manufacture. The yeast Kluyveromyces lactis is a promising host strain for expression of the chymosin gene. However, low yields (80 U/ml in shake flask cultures) were obtained when the K. lactis strain GG799 was used to express chymosin. We hypothesized that the codon-usage bias of the host may have resulted in inefficient translation and chymosin production. To improve expression efficiency of recombinant calf chymosin in K. lactis strain GG799, we designed and synthesized a DNA sequence encoding calf prochymosin using optimized codons, while keeping the G + C content relatively low. We altered 333 nucleotides to optimize codons encoding 315 amino acids. In shaking flask culture, chymosin activity was 575 U/ml in the strain expressing the optimized gene, a sevenfold higher expression level compared with the non-optimized control. SDS–PAGE analysis revealed that the purified recombinant calf chymosin had a molecular mass of 35.6 kDa, the same as the molecular weight of native calf chymosin. Alpha-casein, beta-casein, and kappa-casein were incubated with the recombinant calf chymosin from K. lactis strain GG799 or chymosin from calf stomach and the breakdown products were analyzed by SDS–PAGE. Both the recombinant calf chymosin and the native calf chymosin specifically hydrolyzed kappa-casein. Our results show that codon optimization of the calf chymosin gene improves expression in K. lactis strain GG799. Genetic manipulation to optimize codon usage has important applications for industrial chymosin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD (1999) Short protocols in molecular biology, 4th edn. Wiley, New York

    Google Scholar 

  • Bansal N, Drake MA, Piraino P, Broe ML, Harboe M, Fox PF, McSweeney PLH (2009) Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese. Int Dairy J 19:510–517

    Article  CAS  Google Scholar 

  • Cardoza RE, Gutiérrez S, Ortega N, Colina A, Casqueiro J, Martín JF (2003) Expression of a synthetic copy of the calf chymosin gene in Aspergillus awamori from constitutive and pH-regulated promoters and secretion using two different pre-pro sequences. Biotechnol Bioeng 83:249–259

    Article  CAS  Google Scholar 

  • Chang SW, Lee GC, Shaw JF (2006) Codon optimization of Candida rugosa lip1 for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. J Agric Food Chem 3:815–822

    Article  Google Scholar 

  • Cullen D, Gray GL, Wilson LJ, Hayenga KJ, Lamsa MH, Rey MW, Norton S, Berka RM (1987) Controlled expression and secretion of calf chymosin in Aspergillus nidulans. Biotechnology 5:369–376

    Article  CAS  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  Google Scholar 

  • Egito AS, Girardet JM, Laguna LE, Poirson C, Molle D, Miclo L, Humbert JL (2007) Milk-clotting activity of enzyme extracts from sunflower and albizia seeds and specific hydrolysis of calf k-casein. J Int Dairy 17:816–825

    Article  CAS  Google Scholar 

  • Emtage JS, Angal S, Doel MT, Harris TJR, Jenkins B, Lilley G, Lowe PA (1983) Synthesis of calf prochymosin (prorennin) in Escherichia coli. Proc Natl Acad Sci 80:3671–3675

    Article  CAS  Google Scholar 

  • Fox PF, McSweeney PLH (1999) Rennets: their role in milk coagulation and cheese ripening. In: Law BA (ed) Microbiology and biochemistry of cheese and fermented milk. Blackie Academic & Professional, London, pp 1–49

    Google Scholar 

  • Hans JM, van den Brink S, Petersen G, Rahbek-Nielsen H, Hellmuth K, Harboe M (2006) Increased production of chymosin by glycosylation. J Biotechnol 125:304–310

    Article  Google Scholar 

  • Harmsen MM, Bruyne MI, Raue HA, Maat J (1996) Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant Thaumatin in yeast. Appl Microbiol Biotechnol 46:365–370

    Article  CAS  Google Scholar 

  • Kumar A, Sharma J, Kumar A, Mohanty S, Virender G, Batish K (2006) Purification and characterization of milk clotting enzyme from goat (Capra hircus). Comp Biochem Physiol B 145:108–113

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Masaru K, Kazuhiro M, Makiko H, Takaichi H, Takeaki O, Sohkichi M, Takeshi Y, Shudo Y, Atsuhiko H, Naoki Y, Mitsuo H (2005) Mycobacterial codon optimization enhances antigen expression and virus-specific immune responses in recombinant Mycobacterium. Gene 26:2–14

    Google Scholar 

  • Mattanovich D, Gasser B, Hohenblum H, Sauer M (2004) Stress in recombinant protein producing yeasts. J Biotechnol 113:121–135

    Article  CAS  Google Scholar 

  • Mellor J, Dobson MJ, Roberts NA (1983) Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24:1–14

    Article  CAS  Google Scholar 

  • Mohanty AK, Mukhopadhyay UK, Grover S, Batish VK (1999) Calf chymosin: production by rDNA technology and application in cheese manufacture. Biotechnol Adv 17:205–217

    Article  CAS  Google Scholar 

  • Neelakantan S, Mohanty AK, Kaushik JK (1999) Production and use of microbial enzymes for dairy processing: a review. Curr Sci 77:143–148

    CAS  Google Scholar 

  • Outchkourov NS, Stiekema WJ, Jongsma MA (2002) Optimization of the expression of equistatin in Pichia pastoris. Protein Expr Purif 24:18–24

    Article  CAS  Google Scholar 

  • Pitts JE, Quinn D, Uusitalo J, Penttila M (1991) Protein engineering of chymosin and expression in Trichoderma reesei. Biochem Soc Trans 19:663–666

    CAS  Google Scholar 

  • Rocha TL, Paterson G, Crimmins K, Boyd A, Sawyer L, Fothergill-Gilmore LA (1996) Expression and secretion of recombinant ovine beta-lactoglobulin in Saccharomyces cerevisiae and Kluyveromyces lactis. Biochem J 313:927–932

    CAS  Google Scholar 

  • Rubio-Texeira M (2006) Endless versatility in the biotechnological applications of Kluyveromyces LAC genes. Biotechnol Adv 24:212–225

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sinclair G, Choy FYM (2002) Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr Purif 26:96–105

    Article  CAS  Google Scholar 

  • Tsuchiya K, Nagashima T, Yamamoto Y, Gomi K, Kitamoto K, Kumagai C, Tamura G (1994) High level secretion of calf chymosin using a glucoamylase fusion gene in Aspergillus oryzae. Biosci Biotechnol 58:895–899

    Article  CAS  Google Scholar 

  • Uccelletti D, Farina F, Mancini P, Palleschi C (2004) KlPMR1 inactivation and calcium addition enhance secretion of non-hyperglycosylated heterologous proteins in Kluyveromyces lactis. J Biotechnol 109:93–101

    Article  CAS  Google Scholar 

  • Van den Berg JA, Van der Laken KJ, Vem Doyen AJ, Renniers TC (1990) Kluyveromyces as a host for heterologous gene expression and secretion of prochymosin. Nat Biotechnol 8:135–139

    Article  Google Scholar 

  • Van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392

    Article  Google Scholar 

  • Walsh MK, Li X (2000) Thermal stability of acid proteinases. J Dairy Res 67:637–640

    Article  CAS  Google Scholar 

  • Wolff AM, Hansen OC, Poulsen U, Madrid S, Stougaard P (2001) Optimization of the production of Chondrus crispus hexose oxidase in P. pastoris. Protein Expr Purif 22:189–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by science and technology funds from the Heilongjiang Province Education Department (No. 11541018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanwei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Z., Zhang, L., Han, X. et al. Codon optimization of the calf prochymosin gene and its expression in Kluyveromyces lactis . World J Microbiol Biotechnol 26, 895–901 (2010). https://doi.org/10.1007/s11274-009-0249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0249-2

Keywords

Navigation