Skip to main content

Advertisement

Log in

Regulation of cancer progression by CK2: an emerging therapeutic target

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Casein kinase II (CK2) is an enzyme with pleiotropic kinase activity that catalyzes the phosphorylation of lots of substrates, including STAT3, p53, JAK2, PTEN, RELA, and AKT, leading to the regulation of diabetes, cardiovascular diseases, angiogenesis, and tumor progression. CK2 is observed to have high expression in multiple types of cancer, which is associated with poor prognosis. CK2 holds significant importance in the intricate network of pathways involved in promoting cell proliferation, invasion, migration, apoptosis, and tumor growth by multiple pathways such as JAK2/STAT3, PI3K/AKT, ATF4/p21, and HSP90/Cdc37. In addition to the regulation of cancer progression, increasing evidence suggests that CK2 could regulate tumor immune responses by affecting immune cell activity in the tumor microenvironment resulting in the promotion of tumor immune escape. Therefore, inhibition of CK2 is initially proposed as a pivotal candidate for cancer treatment. In this review, we discussed the role of CK2 in cancer progression and tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Pinna L. A historical view of protein kinase CK2. Cell Mol Biol Res. 1994;40:383–90.

    CAS  PubMed  Google Scholar 

  2. Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J. 2003;369:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Montenarh M, Götz C. Protein kinase CK2 and ion channels. Biomed Rep. 2020;13:1.

    Article  Google Scholar 

  4. Faust RA, Niehans G, Gapany M, Hoistad D, Knapp D, Cherwitz D, et al. Subcellular immunolocalization of protein kinase CK2 in normal and carcinoma cells. Int J Biochem Cell Biol. 1999;31:941–9.

    Article  CAS  PubMed  Google Scholar 

  5. Yu H, Yang X, Tang J, Si S, Zhou Z, Lu J, et al. ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2α-mediated glycolysis. Molr Ther Nucleic Acids. 2021;23:27–41.

    Article  CAS  Google Scholar 

  6. Kwon J, Zhang J, Mok B, Han C. CK2-Mediated phosphorylation upregulates the stability of USP13 and promotes ovarian cancer cell proliferation. Cancers. 2022;15:200.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Siddiqui YH, Kershaw RM, Humphreys EH, Assis Junior E, Chaudhri S, Jayaraman P-S, et al. CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation. Oncogenesis. 2017;6:e293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Im D-K, Cheong H, Lee JS, Oh M-K, Yang KM. Protein kinase CK2-dependent aerobic glycolysis-induced lactate dehydrogenase A enhances the migration and invasion of cancer cells. Sci Rep. 2019;9:1–11.

    Article  Google Scholar 

  9. Niechi I, Silva E, Cabello P, Huerta H, Carrasco V, Villar P, et al. Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability. Oncotarget. 2015;6:42749.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu D, Sui C, Meng F, Tian X, Fu L, Li Y, et al. Stable knockdown of protein kinase CK2-alpha (CK2α) inhibits migration and invasion and induces inactivation of hedgehog signaling pathway in hepatocellular carcinoma Hep G2 cells. Acta Histochem. 2014;116:1501–8.

    Article  CAS  PubMed  Google Scholar 

  11. Qaiser F, Trembley JH, Kren BT, Wu JJ, Naveed AK, Ahmed K. Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function. J Cell Biochem. 2014;115:2103–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang L, Ruan X, Gu M, Mueck A. E2+ norethisterone promotes the PI3K–AKT pathway via PGRMC1 to induce breast cancer cell proliferation. Climacteric. 2022;25:467–75.

    Article  CAS  PubMed  Google Scholar 

  13. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:1–9.

    CAS  Google Scholar 

  14. Zhao N, Wang C, Guo P, Hou J, Yang H, Lan T, et al. CCDC106 promotes the proliferation and invasion of ovarian cancer cells by suppressing p21 transcription through a p53-independent pathway. Bioengineered. 2022;13:10957–73.

    Article  CAS  PubMed Central  Google Scholar 

  15. Manni S, Carrino M, Piazza F. Role of protein kinases CK1α and CK2 in multiple myeloma: regulation of pivotal survival and stress-managing pathways. J Hematol Oncol. 2017;10:1–10.

    Article  Google Scholar 

  16. Sun J, Zhang X, Sun Y. C1orf109 promotes malignant phenotype of liver cancer via wnt signaling pathway in a CK2-dependent manner. J Mol Histol. 2023;54:135–45.

    Article  CAS  PubMed  Google Scholar 

  17. Quotti Tubi L, Gurrieri C, Brancalion A, Bonaldi L, Bertorelle R, Manni S, et al. Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. J Hematol Oncol. 2013;6:1–15.

    Article  Google Scholar 

  18. Ren X, Feng C, Wang Y, Chen P, Wang S, Wang J, et al. SLC39A10 promotes malignant phenotypes of gastric cancer cells by activating the CK2-mediated MAPK/ERK and PI3K/AKT pathways. Exp Mol Med. 2023. https://doi.org/10.1038/s12276-023-01062-5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zou J, Luo H, Zeng Q, Dong Z, Wu D, Liu L. Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. J Transl Med. 2011;9:1–11.

    Article  Google Scholar 

  20. Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim S, Ham S, Yang K, Kim K. Protein kinase CK2 activation is required for transforming growth factor β-induced epithelial–mesenchymal transition. Mol Oncol. 2018;12:1811–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turowec JP, Duncan JS, Gloor GB, Litchfield DW. Regulation of caspase pathways by protein kinase CK2: identification of proteins with overlapping CK2 and caspase consensus motifs. Mol Cell Biochem. 2011;356:159–67.

    Article  CAS  PubMed  Google Scholar 

  23. Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021;277: 119627.

    Article  CAS  PubMed  Google Scholar 

  24. Trembley J, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci. 2009;66:1858–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nipun V, Amin K. Recent advances in protein kinase CK2, a potential therapeutic target in cancer. Russ J Bioorg Chem. 2022;48:919–31.

    Article  CAS  Google Scholar 

  26. Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019;10:1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruzzene M, Bertacchini J, Toker A, Marmiroli S. Cross-talk between the CK2 and AKT signaling pathways in cancer. Adv Biol Regul. 2017;64:1–8.

    Article  CAS  PubMed  Google Scholar 

  28. Hwang S-Y, Chae J-I, Kwak A-W, Lee M-H, Shim J-H. Alternative options for skin cancer therapy via regulation of AKT and related signaling pathways. Int J Mol Sci. 2020;21:6869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duan Y, Haybaeck J, Yang Z. Therapeutic potential of PI3K/AKT/mTOR pathway in gastrointestinal stromal tumors: rationale and progress. Cancers. 2020;12:2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen J-F, Wu P, Xia R, Yang J, Huo X-Y, Gu D-Y, et al. STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol Cancer. 2018;17:1–16.

    Article  Google Scholar 

  31. Trembley JH, Kren BT, Abedin MJ, Shaughnessy DP, Li Y, Dehm SM, et al. CK2 pro-survival role in prostate cancer is mediated via maintenance and promotion of androgen receptor and NFκB p65 expression. Pharmaceuticals. 2019;12:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE. Protein kinase CK2 promotes aberrant activation of nuclear factor-κB, transformed phenotype, and survival of breast cancer cells. Can Res. 2002;62:6770–8.

    CAS  Google Scholar 

  33. Borgo C, D’Amore C, Sarno S, Salvi M, Ruzzene M. Protein kinase CK2: A potential therapeutic target for diverse human diseases. Signal Transduct Target Ther. 2021;6:183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aparicio-Siegmund S, Sommer J, Monhasery N, Schwanbeck R, Keil E, Finkenstädt D, et al. Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget. 2014;5:2131.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lecarpentier Y, Schussler O, Hébert J-L, Vallée A. Multiple targets of the canonical WNT/β-catenin signaling in cancers. Front Oncol. 2019;9:1248.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Firnau M-B, Brieger A. CK2 and the hallmarks of cancer. Biomedicines. 2022;10:1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang S, Yang Y-L, Wang Y, You B, Dai Y, Chan G, et al. CK2α, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells. J Exp Clin Cancer Res. 2014;33:1–12.

    Google Scholar 

  38. Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84:359–69.

    Article  CAS  PubMed  Google Scholar 

  39. Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer. 2018;18:1–16.

    Article  Google Scholar 

  40. Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer. 2004;90:1265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus: implications for PTEN stability to proteasome-mediated degradation. J Biol Chem. 2001;276:993–8.

    Article  CAS  PubMed  Google Scholar 

  42. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol. 2000;20:5010–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F, et al. Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ. 2005;12:668–77.

    Article  PubMed  Google Scholar 

  44. Konicek BW, Dumstorf CA, Graff JR. Targeting the eIF4F translation initiation complex for cancer therapy. Cell Cycle. 2008;7:2466–71.

    Article  CAS  PubMed  Google Scholar 

  45. Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31.

    Article  CAS  PubMed  Google Scholar 

  46. Duncan JS, Turowec JP, Vilk G, Li SS, Gloor GB, Litchfield DW. Regulation of cell proliferation and survival: convergence of protein kinases and caspases. Biochimica et Biophysica Acta. 2010;1804:505–10.

    Article  CAS  PubMed  Google Scholar 

  47. Degli Esposti M, Ferry G, Masdehors P, Boutin JA, Hickman JA, Dive C. Post-translational modification of Bid has differential effects on its susceptibility to cleavage by caspase 8 or caspase 3. J Biol Chem. 2003;278:15749–57.

    Article  CAS  PubMed  Google Scholar 

  48. Lucero M, Suarez AE, Chambers JW. Phosphoregulation on mitochondria: integration of cell and organelle responses. CNS Neurosci Ther. 2019;25:837–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruzzene M, Penzo D, Pinna LA. Protein kinase CK2 inhibitor 4, 5, 6, 7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem J. 2002;364:41–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamane K, Kinsella TJ. Casein kinase 2 regulates both apoptosis and the cell cycle following DNA damage induced by 6-thioguanine. Clin Cancer Res. 2005;11:2355–63.

    Article  CAS  PubMed  Google Scholar 

  51. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11:338–51.

    Article  CAS  PubMed  Google Scholar 

  52. Hashimoto A, Gao C, Mastio J, Kossenkov A, Abrams SI, Purandare AV, et al. Inhibition of casein kinase 2 disrupts differentiation of myeloid cells in cancer and enhances the efficacy of immunotherapy in MiceCK2 INHIBITOR and MDSC. Can Res. 2018;78:5644–55.

    Article  CAS  Google Scholar 

  53. Cheng P, Kumar V, Liu H, Youn J-I, Fishman M, Sherman S, et al. Effects of notch signaling on regulation of myeloid cell differentiation in cancernotch and myeloid cells in cancer. Can Res. 2014;74:141–52.

    Article  CAS  Google Scholar 

  54. Reverendo M, Argüello RJ, Polte C, Valečka J, Camosseto V, Auphan-Anezin N, et al. Polymerase III transcription is necessary for T cell priming by dendritic cells. Proc Natl Acad Sci. 2019;116:22721–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mayoux M, Roller A, Pulko V, Sammicheli S, Chen S, Sum E, et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med. 2020;12:e7431.

    Article  Google Scholar 

  56. Zhao X, Wei Y, Chu Y-Y, Li Y, Hsu J-M, Jiang Z, et al. Phosphorylation and stabilization of PD-L1 by CK2 suppresses dendritic cell function. Can Res. 2022;82:2185–95.

    Article  CAS  Google Scholar 

  57. Ljunggren H-G, Malmberg K-J. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007;7:329–39.

    Article  CAS  PubMed  Google Scholar 

  58. Kim H, Kim K, Lee K, Kim S, Kim J. Inhibition of casein kinase 2 enhances the death ligand-and natural kiler cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol. 2008;152:336–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nelson N, Szekeres K, Iclozan C, Rivera IO, McGill A, Johnson G, et al. Apigenin: selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS ONE. 2017;12: e0170197.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, et al. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem. 2009;284:13869–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang W, Wei H, Benavides GA, Turbitt WJ, Buckley JA, Ouyang X, et al. Protein kinase CK2 controls CD8+ T cell effector and memory function during infection. J Immunol. 2022;209:896–906.

    Article  CAS  PubMed  Google Scholar 

  62. Wei H, Yang W, Hong H, Yan Z, Qin H, Benveniste EN. Protein kinase CK2 regulates B cell development and differentiation. J Immunol. 2021;207:799–808.

    Article  CAS  PubMed  Google Scholar 

  63. Piazza F, Manni S, Ruzzene M, Pinna L, Gurrieri C, Semenzato G. Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia. 2012;26:1174–9.

    Article  CAS  PubMed  Google Scholar 

  64. Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G, et al. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood. 2006;108:1698–707.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao M, Ma J, Zhu H-Y, Zhang X-H, Du Z-Y, Xu Y-J, et al. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Mol Cancer. 2011;10:1–14.

    Article  Google Scholar 

  66. Chou S-T, Patil R, Galstyan A, Gangalum PR, Cavenee WK, Furnari FB, et al. Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. J Control Release. 2016;244:14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gou Q, Chen H, Chen M, Shi J, Jin J, Liu Q, et al. Inhibition of CK2/ING4 pathway facilitates non-small cell lung cancer immunotherapy. Adv Sci (Weinh). 2023;10:e2304068. https://doi.org/10.1002/advs.202304068.

    Article  CAS  PubMed  Google Scholar 

  68. Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K. Targeting CK2 for cancer therapy. Anticancer Drugs. 2005;16:1037–43.

    Article  CAS  PubMed  Google Scholar 

  69. Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, et al. EGF-induced ERK activation promotes CK2-mediated disassociation of α-catenin from β-catenin and transactivation of β-catenin. Mol Cell. 2009;36:547–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Di Maira G, Brustolon F, Bertacchini J, Tosoni K, Marmiroli S, Pinna L, et al. Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene. 2007;26:6915–26.

    Article  PubMed  Google Scholar 

  71. Kramerov A, Saghizadeh M, Caballero S, Shaw L, Li Calzi S, Bretner M, et al. Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites. Mol Cell Biochem. 2008;316:177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Singh NN, Ramji DP. Protein kinase CK2, an important regulator of the inflammatory response? J Mol Med. 2008;86:887–97.

    Article  CAS  PubMed  Google Scholar 

  73. Ahmed K, Tawfic S, Yu S, Wang H, Faust R, Davis A. Protein kinase CK2 signal in neoplasia. Histol Histopathol. 2001;16:573–82.

    PubMed  Google Scholar 

  74. Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2-a key suppressor of apoptosis. Adv Enzyme Regul. 2008;48:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seldin DC, Lou DY, Toselli P, Landesman-Bollag E, Dominguez I. Gene targeting of CK2 catalytic subunits. Mol Cell Biochem. 2008;316:141–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Son YH, Song JS, Kim SH, Kim J. Pharmacokinetic characterization of CK2 inhibitor CX-4945. Arch Pharmacal Res. 2013;36:840–5.

    Article  CAS  Google Scholar 

  77. Perea SE, Baladrón I, Valenzuela C, Perera Y. CIGB-300: a peptide-based drug that impairs the Protein Kinase CK2-mediated phosphorylation. In: Seminars in oncology. Amsterdam: Elsevier; 2018. p. 58–67.

    Google Scholar 

  78. Jung M, Park KH, Kim HM, Kim TS, Zhang X, Park S-M, et al. Inhibiting casein kinase 2 overcomes paclitaxel resistance in gastric cancer. Gastric Cancer. 2019;22:1153–63.

    Article  CAS  PubMed  Google Scholar 

  79. Wińska P, Widło Ł, Skierka K, Krzyśko A, Koronkiewicz M, Cieśla JM, et al. Simultaneous inhibition of protein kinase CK2 and dihydrofolate reductase results in synergistic effect on acute lymphoblastic leukemia cells. Anticancer Res. 2019;39:3531–42.

    Article  PubMed  Google Scholar 

  80. D’Amore C, Borgo C, Sarno S, Salvi M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy–potential clinical relevance. Cell Oncol. 2020;43:1003–16.

    Article  Google Scholar 

  81. McCarty MF, Assanga SI, Lujan LL. Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses. 2020;141: 109723.

    Article  CAS  PubMed  Google Scholar 

  82. Yim H, Lee YH, Lee CH, Lee SK. Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta Med. 1999;65:9–13.

    Article  CAS  PubMed  Google Scholar 

  83. Costa PSd, Ramos PS, Ferreira C, Silva JL, El-Bacha T, Fialho E. Pro-oxidant effect of resveratrol on human breast cancer MCF-7 cells is associated with CK2 inhibition. Nutr Cancer. 2022;74:2142–51.

    Article  CAS  PubMed  Google Scholar 

  84. Manni S, Brancalion A, Tubi LQ, Colpo A, Pavan L, Cabrelle A, et al. Protein kinase CK2 protects multiple myeloma cells from ER stress–induced apoptosis and from the cytotoxic effect of hsp90 inhibition through regulation of the unfolded protein response. Clin Cancer Res. 2012;18:1888–900.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao Z, Wang L, Volk AG, Birch NW, Stoltz KL, Bartom ET, et al. Regulation of MLL/COMPASS stability through its proteolytic cleavage by taspase1 as a possible approach for clinical therapy of leukemia. Genes Dev. 2019;33:61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Menyhart D, Gyenis L, Jurcic K, Roffey SE, Puri A, Jovanovic P, et al. Comparison of CX-4945 and SGC-CK2-1 as inhibitors of CSNK2 using quantitative phosphoproteomics: triple SILAC in combination with inhibitor-resistant CSNK2. Curr Res Chem Biol. 2023;3: 100041.

    Article  CAS  Google Scholar 

  87. Li K, Zhou F, Zhou Y, Zhang S, Li Q, Li Z, et al. Quinalizarin, a specific CK2 inhibitor, can reduce icotinib resistance in human lung adenocarcinoma cell lines. Int J Mol Med. 2019;44:437–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lindenblatt D, Applegate V, Nickelsen A, Klußmann M, Neundorf I, Götz C, et al. Molecular plasticity of crystalline CK2α′ leads to KN2, a bivalent inhibitor of protein kinase CK2 with extraordinary selectivity. J Med Chem. 2021;65:1302–12.

    Article  PubMed  Google Scholar 

  89. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. Cancer J Clin. 2024;74:12–49.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82172979, 81972618).

Author information

Authors and Affiliations

Authors

Contributions

SH, YG, and YH wrote the manuscript. JS and YH corrected the manuscript.

Corresponding author

Correspondence to Yongzhong Hou.

Ethics declarations

Competing interest

The authors have no conflicting interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Guo, Y., Huo, Y. et al. Regulation of cancer progression by CK2: an emerging therapeutic target. Med Oncol 41, 94 (2024). https://doi.org/10.1007/s12032-024-02316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02316-6

Keywords

Navigation