Skip to main content

Advertisement

Log in

A comprehensive review of SHP2 and its role in cancer

  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability 

Not applicable.

References

  1. B.G. Neel, H. Gu, L. Pao, The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. P. Hof, S. Pluskey, S. Dhe-Paganon, M.J. Eck, S.E. Shoelson, Crystal structure of the tyrosine phosphatase SHP-2. Cell 92, 441–450 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Z.H. Yu, J. Xu, C.D. Walls, L. Chen, S. Zhang, R.Y. Zhang, L. Wu, L.N. Wang, S.J. Liu, Z.Y. Zhang, Structural and Mechanistic Insights into LEOPARD Syndrome-Associated SHP2 Mutations. J. Biol. Chem. 288, 10472–10482 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. B.J. Mayer, What Have We Learned from SH2 Domains? Methods Mol. Biol. 1555, 37–43 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. T. Noguchi, T. Matozaki, K. Horita, Y. Fujioka, M. Kasuga, Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol. Cell. Biol. 14, 6674–6682 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Tajan, A.D. Serra, P. Valet, T. Edouard, A. Yart, SHP2 sails from physiology to pathology. Eur. J. Med. Genet. 58, 509–525 (2015)

    Article  PubMed  Google Scholar 

  7. J.R. LaRochelle, M. Fodor, V. Vemulapalli, M. Mohseni, P. Wang, T. Stams, M.J. LaMarche, R. Chopra, M.G. Acker and S.C. Blacklow, Structural reorganization of SHP2 by oncogenic mutations and implications for oncoprotein resistance to allosteric inhibition. Nat. Commun. 9, (2018)

  8. A.M. Bennett, T.L. Tang, S. Sugimoto, C.T. Walsh, B.G. Neel, Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc Natl Acad Sci U S A 91, 7335–7339 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. W. Li, R. Nishimura, A. Kashishian, A.G. Batzer, W.J. Kim, J.A. Cooper, J. Schlessinger, A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol. Cell. Biol. 14, 509–517 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Rosário, How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol 13, 328–335 (2003)

    Article  PubMed  Google Scholar 

  11. K.S. Grossmann, M. Rosario, C. Birchmeier, W. Birchmeier, The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res 106, 53–89 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. K. Miura, Y. Wakayama, M. Tanino, Y. Orba, H. Sawa, M. Hatakeyama, S. Tanaka, H. Sabe, N. Mochizuki, Involvement of EphA2-mediated tyrosine phosphorylation of Shp2 in Shp2-regulated activation of extracellular signal-regulated kinase. Oncogene 32, 5292–5301 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. D. Barford, B.G. Neel, Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 6, 249–254 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. M. Marasco, A. Berteotti, J. Weyershaeuser, N. Thorausch, J. Sikorska, J. Krausze, H.J. Brandt, J. Kirkpatrick, P. Rios, W.W. Schamel, M. Kohn, T. Carlomagno, Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci. Adv. 6, eaay4458 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D.L. Kerr, F. Haderk, T.G. Bivona, Allosteric SHP2 inhibitors in cancer: Targeting the intersection of RAS, resistance, and the immune microenvironment. Curr. Opin. Chem. Biol. 62, 1–12 (2021)

    Article  CAS  PubMed  Google Scholar 

  16. T. Araki, H. Nawa, B.G. Neel, Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. J. Biol. Chem. 278, 41677–41684 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. L.M. Scott, H.R. Lawrence, S.M. Sebti, N.J. Lawrence, J. Wu, Targeting Protein Tyrosine Phosphatases for Anticancer Drug Discovery. Curr. Pharm. Des. 16, 1843–1862 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Song, L. Lai, Z. Chong, J. He, Y. Zhang, Y. Xue, Y. Xie, S. Chen, P. Dong, L. Chen, Z. Chen, F. Dai, X. Wan, P. Xiao, X. Cao, Y. Liu, Q. Wang, E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat. Commun. 8, 14654 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R. Deng, X. Zhao, Y. Qu, C. Chen, C. Zhu, H. Zhang, H. Yuan, H. Jin, X. Liu, Y. Wang, Q. Chen, J. Huang, J. Yu, Shp2 SUMOylation promotes ERK activation and hepatocellular carcinoma development. Oncotarget 6, 9355–9369 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Q. Huang, N. Lerner-Marmarosh, W. Che, S. Ohta, M. Osawa, M. Yoshizumi, M. Glassman, C. Yan, B.C. Berk, J. Abe, The novel role of the C-terminal region of SHP-2. Involvement of Gab1 and SHP-2 phosphatase activity in Elk-1 activation. J. Biol. Chem. 277, 29330–29341 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. M. Anselmi, P. Calligari, J.S. Hub, M. Tartaglia, G. Bocchinfuso, L. Stella, Structural determinants of phosphopeptide binding to the N-Terminal Src homology 2 domain of the SHP2 phosphatase. J. Chem. Inf. Model 60, 3157–3171 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J.R. LaRochelle, M. Fodor, X. Xu, I. Durzynska, L. Fan, T. Stams, H.M. Chan, M.J. LaMarche, R. Chopra, P. Wang, P.D. Fortin, M.G. Acker, S.C. Blacklow, Structural and functional consequences of three cancer-associated mutations of the oncogenic phosphatase SHP2. Biochemistry 55, 2269–2277 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. S. Pluskey, T.J. Wandless, C.T. Walsh, S.E. Shoelson, Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains. J. Biol. Chem. 270, 2897–2900 (1995)

    Article  PubMed  Google Scholar 

  24. M. Marasco, J. Kirkpatrick, V. Nanna, J. Sikorska, T. Carlomagno, Phosphotyrosine couples peptide binding and SHP2 activation via a dynamic allosteric network. Comput. Struct. Biotechnol. J. 19, 2398–2415 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Anselmia, J.S. Huba. The loops of the N-SH2 binding cleft do not serve as allosteric switch in SHP2 activation. Proc. Natl. Acad. Sci. U. S. A. 118 (2021)

  26. S. Bobone, L. Pannone, B. Biondi, M. Solman, E. Flex, V.C. Canale, P. Calligari, C. De Faveri, T. Gandini, A. Quercioli, G. Torini, M. Venditti, A. Lauri, G. Fasano, J. Hoeksma, V. Santucci, G. Cattani, A. Bocedi, G. Carpentieri, V. Tirelli, M. Sanchez, C. Peggion, F. Formaggio, J. den Hertog, S. Martinelli, G. Bocchinfuso, M. Tartaglia and L. Stella, Targeting Oncogenic Src Homology 2 Domain-Containing Phosphatase 2 (SHP2) by Inhibiting Its Protein-Protein Interactions. J. Med. Chem. (2021)

  27. M. Valius, A. Kazlauskas, Phospholipase C-γ1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell 73, 321–334 (1993)

    Article  CAS  PubMed  Google Scholar 

  28. R.J. Chan, G.S. Feng, PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood 109, 862–867 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Jakob, P. Schroeder, M. Lukosz, N. Buchner, I. Spyridopoulos, J. Altschmied, J. Haendeler, Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J. Biol. Chem. 283, 33155–33161 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Jiang, M.S. Jin, F. Kong, Y.P. Wang, Z.F. Jia, D.H. Cao, H.X. Ma, J. Suo, X.Y. Cao, Increased expression of tyrosine phosphatase SHP-2 in Helicobacter pylori-infected gastric cancer. World J. Gastroenterol. 19, 575–580 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M.E. Chen, Y.C. Wang, D.W. Wu, C.Y. Chen, H.E. Lee, Association of nuclear localization of SHP2 and YAP1 with unfavorable prognosis in non-small cell lung cancer. Pathol. Res. Pract. 215, 801–806 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. Y. Huang, J. Wang, F. Cao, H. Jiang, A. Li, J. Li, L. Qiu, H. Shen, W. Chang, C. Zhou, Y. Pan, Y. Lu, SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci. Rep. 7, 17597 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  33. H. Ran, S. Kong, S. Zhang, J. Cheng, C. Zhou, B. He, Q. Xin, J.P. Lydon, F.J. DeMayo, G.S. Feng, G. Xia, Z. Lu, C. Wang, H. Wang, Nuclear Shp2 directs normal embryo implantation via facilitating the ERalpha tyrosine phosphorylation by the Src kinase. Proc. Natl. Acad. Sci. U. S. A. 114, 4816–4821 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. Li, Y. Kang, L. Wei, W. Liu, Y. Tian, B. Chen, X. Lin, Y. Li, G.S. Feng, Z. Lu, Tyrosine phosphatase Shp2 mediates the estrogen biological action in breast cancer via interaction with the estrogen extranuclear receptor. PLoS. ONE 9, e102847 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  35. M. Salvi, A. Stringaro, A.M. Brunati, E. Agostinelli, G. Arancia, G. Clari, A. Toninello, Tyrosine phosphatase activity in mitochondria: presence of Shp-2 phosphatase in mitochondria. Cell Mol. Life Sci. 61, 2393–2404 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. W.J. Guo, W. Liu, Z. Chen, Y.H. Gu, S. Peng, L.H. Shen, Y. Shen, X.Q. Wang, G.S. Feng, Y. Sun and Q. Xu, Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis. Nat. Commun. 8, (2017)

  37. X.Q. Ren, C. Wang, B.B. Xie, L.F. Hu, H. Chai, L. Ding, L.H. Tang, Y.L. Xia, X.B. Dou, Tanshinone IIA induced cell death via miR30b-p53-PTPN11/SHP2 signaling pathway in human hepatocellular carcinoma cells. Eur. J. Pharmacol. 796, 233–241 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. S.W. Chen, S.Q. Zhu, X. Pei, B.Q. Qiu, D. Xiong, X. Long, K. Lin, F. Lu, J.J. Xu, Y.B. Wu, Cancer cell-derived exosomal circUSP7 induces CD8(+) T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol. Cancer 20, 144 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  39. A. Zehender, J. Huang, A.H. Gyorfi, A.E. Matei, T. Trinh-Minh, X. Xu, Y.N. Li, C.W. Chen, J. Lin, C. Dees, C. Beyer, K. Gelse, Z.Y. Zhang, C. Bergmann, A. Ramming, W. Birchmeier, O. Distler, G. Schett, J.H.W. Distler, The tyrosine phosphatase SHP2 controls TGFbeta-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nat. Commun. 9, 3259 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  40. A. Beldi-Ferchiou, N. Skouri, C. Ben Ali, I. Safra, A. Abdelkefi, S. Ladeb, K. Mrad, T. Ben Othman, M. Ben Ahmed, Abnormal repression of SHP-1, SHP-2 and SOCS-1 transcription sustains the activation of the JAK/STAT3 pathway and the progression of the disease in multiple myeloma. PLoS One 12, e0174835 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Z. Cai, X.Y. Hao, F.X. Liu, MicroRNA-186 serves as a tumor suppressor in oral squamous cell carcinoma by negatively regulating the protein tyrosine phosphatase SHP2 expression. Arch. Oral. Biol. 89, 20–25 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. W. Jun, O. Shaobo, Z. Xianhua, Z. Siyu, C. Mingyang, F. Xin, C. Ying, L. Lan, Deregulation of hsa_circ_0001971/miR-186 and hsa_circ_0001874/miR-296 signaling pathways promotes the proliferation of oral squamous carcinoma cells by synergistically activating SHP2/PLK1 signals. Sci. Rep. 11, 20561 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Y. Cheng, D. Wang, F. Wang, J. Liu, B. Huang, M.A. Baker, J. Yin, R. Wu, X. Liu, K.R. Regner, K. Usa, Y. Liu, C. Zhang, L. Dong, A.M. Geurts, N. Wang, S.S. Miller, Y. He, M. Liang, Endogenous miR-204 protects the kidney against chronic injury in hypertension and diabetes. J. Am. Soc. Nephrol. 31, 1539–1554 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Y. Patel, N. Shah, J.S. Lee, E. Markoutsa, C.F. Jie, S. Liu, R. Botbyl, D. Reisman, P.S. Xu, H.X. Chen, A novel double-negative feedback loop between miR-489 and the HER2-SHP2-MAPK signaling axis regulates breast cancer cell proliferation and tumor growth. Oncotarget 7, 18295–18308 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  45. R.C. Quilang, S. Liu, K. Forbes, miR-514a-3p: a novel SHP-2 regulatory miRNA that modulates human cytotrophoblast proliferation. J. Mol. Endocrinol. 68, 99–110 (2022)

    Article  CAS  PubMed  Google Scholar 

  46. N. Chughtai, S. Schimchowitsch, J.J. Lebrun, S. Ali, Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells. J. Biol. Chem. 277, 31107–31114 (2002)

    Article  CAS  PubMed  Google Scholar 

  47. R. Tsutsumi, M. Masoudi, A. Takahashi, Y. Fujii, T. Hayashi, I. Kikuchi, Y. Satou, M. Taira, M. Hatakeyama, YAP and TAZ, hippo signaling targets, act as a rheostat for nuclear SHP2 Function. Dev. Cell 26, 658–665 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. R.A.P. Padua, Y.Z. Sun, I. Marko, W. Pitsawong, J.B. Stiller, R. Otten and D. Kern, Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Nat. Commun. 9, (2018)

  49. M. Tartaglia, S. Martinelli, L. Stella, G. Bocchinfuso, E. Flex, V. Cordeddu, G. Zampino, I. Burgt, A. Palleschi, T.C. Petrucci, M. Sorcini, C. Schoch, R. Foa, P.D. Emanuel, B.D. Gelb, Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am. J. Hum. Genet. 78, 279–290 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. M. Tartaglia, E.L. Mehler, R. Goldberg, G. Zampino, H.G. Brunner, H. Kremer, I. van der Burgt, A.H. Crosby, A. Ion, S. Jeffery, K. Kalidas, M.A. Patton, R.S. Kucherlapati, B.D. Gelb, Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468 (2001)

    Article  CAS  PubMed  Google Scholar 

  51. M. Tartaglia, C.M. Niemeyer, A. Fragale, X. Song, J. Buechner, A. Jung, K. Hahlen, H. Hasle, J.D. Licht, B.D. Gelb, Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003)

    Article  CAS  PubMed  Google Scholar 

  52. H. Keilhack, F.S. David, M. McGregor, L.C. Cantley, B.G. Neel, Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J. Biol. Chem. 280, 30984–30993 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. M.I. Kontaridis, K.D. Swanson, F.S. David, D. Barford, B.G. Neel, PTPN11 (Shp2) Mutations in LEOPARD syndrome have dominant negative, not activating, effects. J. Biol. Chem. 281, 6785–6792 (2006)

    Article  CAS  PubMed  Google Scholar 

  54. L. Dong, D. Han, X. Meng, M. Xu, C. Zheng, Q. Xia, Activating mutation of SHP2 establishes a tumorigenic phonotype through cell-autonomous and non-cell-autonomous mechanisms. Front. Cell Dev. Biol. 9, 630712 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  55. R.Y. Zhang, Z.H. Yu, L. Chen, C.D. Walls, S. Zhang, L. Wu, Z.Y. Zhang, Mechanistic insights explain the transforming potential of the T507K substitution in the protein-tyrosine phosphatase SHP2. J. Biol. Chem. 295, 6187–6201 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. C. Schramm, D.M. Fine, M.A. Edwards, A.N. Reeb, M. Krenz, The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am. J. Physiol. Heart Circ. Physiol. 302, H231-243 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. S. Noda, A. Takahashi, T. Hayashi, S. Tanuma, M. Hatakeyama, Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling. Biochem. Biophys. Res. Commun. 469, 1133–1139 (2016)

    Article  CAS  PubMed  Google Scholar 

  58. M.G. Mohi, I.R. Williams, C.R. Dearolf, G. Chan, J.L. Kutok, S. Cohen, K. Morgan, C. Boulton, H. Shigematsu, H. Keilhack, K. Akashi, D.G. Gilliland, B.G. Neel, Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell. 7, 179–191 (2005)

    Article  CAS  PubMed  Google Scholar 

  59. J. Li, S.A. Reed, S.E. Johnson, Hepatocyte growth factor (HGF) signals through SHP2 to regulate primary mouse myoblast proliferation. Exp. Cell. Res. 315, 2284–2292 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. H. Chen, S. Libring, K.V. Ruddraraju, J. Miao, L. Solorio, Z.Y. Zhang, M.K. Wendt, SHP2 is a multifunctional therapeutic target in drug resistant metastatic breast cancer. Oncogene 39, 7166–7180 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  61. Y.M. Agazie, M.J. Hayman, Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol. Cell Biol. 23, 7875–7886 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. F. Matalkah, E. Martin, H. Zhao, Y.M. Agazie, SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer. Breast Cancer Res. 18, 2 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  63. J. Sun, S. Lu, M. Ouyang, L.J. Lin, Y. Zhuo, B. Liu, S. Chien, B.G. Neel, Y. Wang, Antagonism between binding site affinity and conformational dynamics tunes alternative cis-interactions within Shp2. Nat. Commun. 4, 2037 (2013)

    Article  PubMed  Google Scholar 

  64. Q. Wang, W.C. Zhao, X.Q. Fu, Q.C. Zheng, Exploring the Allosteric Mechanism of Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase 2 (SHP2) by Molecular Dynamics Simulations. Front. Chem. 8, 597495 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. W. Vogel, R. Lammers, J. Huang, A. Ullrich, Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 259, 1611–1614 (1993)

    Article  CAS  PubMed  Google Scholar 

  66. U. Dechert, A.M. Duncan, L. Bastien, C. Duff, M. Adam, F.R. Jirik, Protein-tyrosine phosphatase SH-PTP2 (PTPN111 is localized to 12q24.1–24.3. Hum Genet 96, 609–615 (1995)

    Article  CAS  PubMed  Google Scholar 

  67. R.J. Lechleider, S. Sugimoto, A.M. Bennett, A.S. Kashishian, J.A. Cooper, S.E. Shoelson, C.T. Walsh, B.G. Neel, Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor. J. Biol. Chem. 268, 21478–21481 (1993)

    Article  CAS  PubMed  Google Scholar 

  68. J. Fiebelkow, A. Guendel, B. Guendel, N. Mehwald, T. Jetka, M. Komorowski, S. Waldherr, F. Schaper, A. Dittrich, The tyrosine phosphatase SHP2 increases robustness and information transfer within IL-6-induced JAK/STAT signalling. Cell Commun. Signal 19, 94 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. J. Zhou, L.L. Cheong, S.C. Liu, S.P. Chong, S. Mahara, C. Bi, O.K. Ong, Q. Zeng and J.W. Chng, The pro-metastasis tyrosine phosphatase, PRL-3 (PTP4A3), is a novel mediator of oncogenic function of BCR-ABL in human chronic myeloid leukemia. Mol. Cancer 11, (2012)

  70. P.S.Y. Chong, J.B. Zhou, J.S.L. Lim, Y.T. Hee, J.Y. Chooi, T.H. Chung, Z.T. Tan, Q. Zeng, D.D. Waller, M. Sebag, W.J. Chng, IL6 Promotes a STAT3-PRL3 feedforward loop via SHP2 repression in multiple myeloma. Cancer Res. 79, 4679–4688 (2019)

    Article  CAS  PubMed  Google Scholar 

  71. U. Lehmann, J. Schmitz, M. Weissenbach, R.M. Sobota, M. Hortner, K. Friederichs, I. Behrmann, W. Tsiaris, A. Sasaki, J. Schneider-Mergener, A. Yoshimura, B.G. Neel, P.C. Heinrich, F. Schaper, SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130. J. Biol. Chem. 278, 661–671 (2003)

    Article  CAS  PubMed  Google Scholar 

  72. Z. Ahmed, C.C. Lin, K.M. Suen, F.A. Melo, J.A. Levitt, K. Suhling, J.E. Ladbury, Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity. J. Cell. Biol. 200, 493–504 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. S. Hanke, M. Mann, The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol. Cell Proteomics 8, 519–534 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Y.R. Hadari, H. Kouhara, I. Lax, J. Schlessinger, Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol. Cell Biol. 18, 3966–3973 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. E. Hui, J. Cheung, J. Zhu, X. Su, M.J. Taylor, H.A. Wallweber, D.K. Sasmal, J. Huang, J.M. Kim, I. Mellman, R.D. Vale, T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. J. Li, H.B. Jie, Y. Lei, N. Gildener-Leapman, S. Trivedi, T. Green, L.P. Kane, R.L. Ferris, PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Res. 75, 508–518 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. J.M. Chemnitz, R.V. Parry, K.E. Nichols, C.H. June, J.L. Riley, SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004)

    Article  CAS  PubMed  Google Scholar 

  78. D.A. Ruess, G.J. Heynen, K.J. Ciecielski, J.Y. Ai, A. Berninger, D. Kabacaoglu, K. Gorgulu, Z. Dantes, S.M. Wormann, K.N. Diakopoulos, A.F. Karpathaki, M. Kowalska, E. Kaya-Aksoy, L. Song, E.A.Z. van der Laan, M.P. Lopez-Alberca, M. Nazare, M. Reichert, D. Saur, M.M. Erkan, U.T. Hopt, B. Sainz, W. Birchmeier, R.M. Schmid, M. Lesina and H. Algul, Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat. Med. 24, 954-+ (2018)

  79. H. Higashi, A. Nakaya, R. Tsutsumi, K. Yokoyama, Y. Fujii, S. Ishikawa, M. Higuchi, A. Takahashi, Y. Kurashima, Y. Teishikata, S. Tanaka, T. Azuma, M. Hatakeyama, Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J. Biol. Chem. 279, 17205–17216 (2004)

    Article  CAS  PubMed  Google Scholar 

  80. E.S. Oh, H. Gu, T.M. Saxton, J.F. Timms, S. Hausdorff, E.U. Frevert, B.B. Kahn, T. Pawson, B.G. Neel, S.M. Thomas, Regulation of early events in integrin signaling by protein tyrosine phosphatase SHP-2. Mol. Cell. Biol. 19, 3205–3215 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. C.C. Lin, L. Wieteska, K.M. Suen, A.P. Kalverda, Z. Ahmed, J.E. Ladbury, Grb2 binding induces phosphorylation-independent activation of Shp2. Commun. Biol. 4, 437 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Y. Cha, K.S. Park, SHP2 is a downstream target of ZAP70 to regulate JAK1/STAT3 and ERK signaling pathways in mouse embryonic stem cells. FEBS Lett. 584, 4241–4246 (2010)

    Article  CAS  PubMed  Google Scholar 

  83. B.T. Burmeister, L. Wang, M.G. Gold, R.A. Skidgel, J.P. O’Bryan, G.K. Carnegie, Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity. J. Biol. Chem. 290, 12058–12067 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. A. Pfeiffer, G. Franciosa, M. Locard-Paulet, I. Piga, K. Reckzeh, V. Vemulapalli, S.C. Blacklow, K. Theilgaard-Mönch, L.J. Jensen and J.V. Olsen, Phosphorylation of SHP2 at Tyr62 enables acquired resistance to SHP2 allosteric inhibitors in FLT3-ITD-driven AML. Cancer Res. (2022)

  85. J.H. Park, R. Ko and S.Y. Lee, Reciprocal regulation of TLR2-mediated IFN-beta production by SHP2 and Gsk3 beta. Sci. Rep. 7, (2017)

  86. P.-C. Tseng, W.-C. Huang, C.-L. Chen, B.-S. Sheu, Y.-S. Shan, C.-C. Tsai, C.-Y. Wang, S.-O. Chen, C.-Y. Hsieh, C.-F. Lin, Regulation of SHP2 by PTEN/AKT/GSK-3β signaling facilitates IFN-γ resistance in hyperproliferating gastric cancer. Immunobiology 217, 926–934 (2012)

    Article  CAS  PubMed  Google Scholar 

  87. C.C. Tsai, J.I. Kai, W.C. Huang, C.Y. Wang, Y. Wang, C.L. Chen, Y.T. Fang, Y.S. Lin, R. Anderson, S.H. Chen, C.W. Tsao, C.F. Lin, Glycogen synthase kinase-3beta facilitates IFN-gamma-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. J. Immunol. 183, 856–864 (2009)

    Article  CAS  PubMed  Google Scholar 

  88. Z. Pan, J. Bao, L. Zhang, S. Wei, UBE2D3 Activates SHP-2 Ubiquitination to Promote Glycolysis and Proliferation of Glioma via Regulating STAT3 Signaling Pathway. Front. Oncol. 11, 674286 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  89. W. Chen, C. Han, B. Xie, X. Hu, Q. Yu, L. Shi, Q. Wang, D. Li, J. Wang, P. Zheng, Y. Liu, X. Cao, Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell 152, 467–478 (2013)

    Article  CAS  PubMed  Google Scholar 

  90. A. Kazlauskas, G.S. Feng, T. Pawson, M. Valius, The 64-kDa protein that associates with the platelet-derived growth factor receptor beta subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp. Proc. Natl. Acad. Sci. U. S. A. 90, 6939–6942 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. M. Holgado-Madruga, D.R. Emlet, D.K. Moscatello, G.A. K. and A.J. Wong, A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 379, 560–564 (1996)

  92. H. Kouhara, Y.R. Hadari, T. Spivak-Kroizman, J. Schilling, D. Bar-Sagi, I. Lax, J. Schlessinger, A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89, 693–702 (1997)

    Article  CAS  PubMed  Google Scholar 

  93. M.R. Kuhné, T. Pawson, G.E. Lienhard, G.S. Feng, The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J. Biol. Chem. 268, 11479–11481 (1993)

    Article  PubMed  Google Scholar 

  94. P. Minooa, N. Chughtai, M. Campiglioa, G.M. Stein, J.J. Lebrunc, A. Ullrichb, S. Alia, The adaptor function of SHP-2 downstream of the prolactin receptor is required for the recruitment of p29, a substrate of SHP-2. Cell. Signal. 15, 319–326 (2003)

    Article  Google Scholar 

  95. A. Takahashi, R. Tsutsumi, I. Kikuchi, C. Obuse, Y. Saito, A. Seidl, R. Karisch, M. Fernandez, T. Cho, N. Ohnishi, O. Rozenblatt-Rosen, M. Meyerson, B.G. Neel, M. Hatakeyama, SHP2 Tyrosine Phosphatase Converts Parafibromin/Cdc73 from a Tumor Suppressor to an Oncogenic Driver. Mol. Cell 43, 45–56 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. E.H. Buckarma, N.W. Werneburg, C.B. Conboy, A. Kabashima, D.R. O’Brien, C. Wang, S. Rizvi, R.L. Smoot, The YAP-Interacting Phosphatase SHP2 Can Regulate Transcriptional Coactivity and Modulate Sensitivity to Chemotherapy in Cholangiocarcinoma. Mol. Cancer Res. 18, 1574–1588 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Z. Songyang, S.E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W.G. Haser, F. King, T. Boberts, S. Ratnofsky, R.J. Lechleider, B.G. Neel, R.B. Birge, J.E. Fajardo, M.M. Chou, H. Hanafusa, B. Schaffhausen, L.C. Cantley, SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993)

    Article  CAS  PubMed  Google Scholar 

  98. S. Sugimoto, T.J. Wandless, S.E. Shoelson, B.G. Neel, C.T. Walsh, Activation of the SH2-containing protein tyrosine phosphatase, SH-PTP2, by phosphotyrosine-containing peptides derived from insulin receptor substrate-1. J. Biol. Chem. 269, 13614–13622 (1994)

    Article  CAS  PubMed  Google Scholar 

  99. M. Stein-Gerlach, C. Wallasch, A. Ullrich, SHP-2, SH2-containing protein tyrosine phosphatase-2. Int. J. Biochem. Cell Biol. 30, 559–566 (1998)

    Article  CAS  PubMed  Google Scholar 

  100. H. Gu, J.C. Pratt, S.J. Burakoff, B.G. Neel, Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol. Cell. 2, 729–740 (1998)

    Article  CAS  PubMed  Google Scholar 

  101. K. Nishida, Y. Yoshida, M. Itoh, T. Fukada, T. Ohtani, T. Shirogane, T. Atsumi, M. Takahashi-Tezuka, K. Ishihara, M. Hibi, T. Hirano, Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors. Blood 93, 1809–1816 (1999)

    Article  CAS  PubMed  Google Scholar 

  102. C. Nardella, F. Malagrino, L. Pagano, S. Rinaldo, S. Gianni and A. Toto, Determining folding and binding properties of the C-terminal SH2 domain of SHP2. Protein Sci. (2021)

  103. T.S. Batth, M. Papetti, A. Pfeiffer, C. Francavilla, J.V. Olsen, Large-scale phosphoproteomics reveals Shp2 phosphatase-dependent regulators of Pdgf receptor signaling. Cell. Rep. 16, S46–S46 (2018)

    Google Scholar 

  104. M. Idrees, S.H. Oh, T. Muhammad, M. El-Sheikh, S.H. Song, K.L. Lee and I.K. Kong, Growth Factors, and Cytokines; Understanding the Role of Tyrosine Phosphatase SHP2 in Gametogenesis and Early Embryo Development. Cells 9, (2020)

  105. C.K. Qu, Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim. Biophys. Acta 1592, 297–301 (2002)

    Article  CAS  PubMed  Google Scholar 

  106. S.Q. Zhang, W.G. Tsiaras, T. Araki, G. Wen, L. Minichiello, R. Klein, B.G. Neel, Receptor-specific regulation of phosphatidylinositol 3’-kinase activation by the protein tyrosine phosphatase Shp2. Mol. Cell. Biol. 22, 4062–4072 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. V. Vemulapalli, L.A. Chylek, A. Erickson, A. Pfeiffer, K.H. Gabriel, J. LaRochelle, K. Subramanian, R. Cao, K. Stegmaier, M. Mohseni, M.J. LaMarche, M.G. Acker, P.K. Sorger, S.P. Gygi and S.C. Blacklow, Time-resolved phosphoproteomics reveals scaffolding and catalysis-responsive patterns of SHP2-dependent signaling. Elife 10, (2021)

  108. J.C. Yoo, M.J. Hayman, HSP70 binds to SHP2 and has effects on the SHP2-related EGFR/GAB1 signaling pathway. Biochem. Biophys. Res. Commun 351, 979–985 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. M.N. Okur, A. Russo, J.P. O’Bryan, Receptor Tyrosine Kinase Ubiquitylation Involves the Dynamic Regulation of Cbl-Spry2 by Intersectin 1 and the Shp2 Tyrosine Phosphatase. Mol. Cell. Biol. 34, 271–279 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  110. Y. Fujioka, T. Matozaki, T. Noguchi, A. Iwamatsu, T. Yamao, N. Takahashi, M. Tsuda, T. Takada, M. Kasuga, A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol. Cell. Biol. 16, 6887–6899 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. H. Zhou, N. Li, Y. Yuan, Y.G. Jin, Q. Wu, L. Yan, Z.Y. Bian, W. Deng, D.F. Shen, H. Li, Q.Z. Tang, Leukocyte immunoglobulin-like receptor B4 protects against cardiac hypertrophy via SHP-2-dependent inhibition of the NF-kappaB pathway. J. Mol. Med. (Berl.) 98, 691–705 (2020)

    Article  CAS  Google Scholar 

  112. L.Y. Gandji, R. Proust, L. Larue and F. Gesbert, The tyrosine phosphatase SHP2 associates with CUB domain-containing protein-1 (CDCP1), regulating its expression at the cell surface in a phosphorylation-dependent manner. Plos One. 10, (2015)

  113. K.I. Pfrepper, A. Marie-Cardine, L. Simeoni, Y. Kuramitsu, A. Leo, J. Spicka, I. Hilgert, J. Scherer, B. Schraven, Structural and functional dissection of the cytoplasmic domain of the transmembrane adaptor protein SIT (SHP2-interacting transmembrane adaptor protein). Eur. J. Immunol. 31, 1825–1836 (2001)

    Article  CAS  PubMed  Google Scholar 

  114. T.T. L., F.J.R. M., A.M. O'Reilly, B.G. Neel and S.S. Y., The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early xenopus development. Cell. 80, 473–483 (1995)

  115. T.M. Saxton, B.G. Ciruna, D. Holmyard, S. Kulkarni, K. Harpal, R. J. and P. T., The SH2 tyrosine phosphatase Shp2 is required for mammalian limb development. Nat. Genet. 24, 420–423 (2000)

    Article  CAS  PubMed  Google Scholar 

  116. T.M. Saxton, M. Henkemeyer, S. Gasca, R. Shen, D.J. Rossi, F. Shalaby, G.S. Feng, T. Pawson, Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. 16, 2352–2364 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. B. Chen, R.T. Bronson, L.D. Klaman, T.G. Hampton, J.F. Wang, P.J. Green, T. Magnuson, P.S. Douglas, J.P. Morgan and N.B. G., Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat. Genet. 296–299 (2000)

  118. C.K. Qu, W.M. Yu, B. Azzarelli, S. Cooper, H.E. Broxmeyer, G.S. Feng, Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells. Mol. Cell. Biol. 18, 6075–6082 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. C.K. Qu, S. Nguyen, J. Chen, G.S. Feng, Requirement of Shp-2 tyrosine phosphatase in lymphoid and hematopoietic cell development. Blood 97, 911–914 (2001)

    Article  CAS  PubMed  Google Scholar 

  120. C.K. Qu, Z.Q. Shi, R. Shen, F.Y. Tsai, S.H. Orkin, G.S. Feng, A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development. Mol. Cell. Biol. 17, 5499–5507 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. E.E. Zhang, E. Chapeau, K. Hagihara, G.S. Feng, Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc. Natl. Acad. Sci. U. S. A. 101, 16064–16069 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. T. Matozaki, Y. Murata, Y. Saito, H. Okazawa, H. Ohnishi, Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Cancer Sci. 100, 1786–1793 (2009)

    Article  CAS  PubMed  Google Scholar 

  123. G.S. Feng, Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Cell Res. 17, 37–41 (2007)

    Article  CAS  PubMed  Google Scholar 

  124. M. Kwon, Y. Ling, L.A. Maile, J. Badley-Clark, D.R. Clemmons, Recruitment of the tyrosine phosphatase Src homology 2 domain tyrosine phosphatase-2 to the p85 subunit of phosphatidylinositol-3 (PI-3) kinase is required for insulin-like growth factor-I-dependent PI-3 kinase activation in smooth muscle cells. Endocrinology 147, 1458–1465 (2006)

    Article  CAS  PubMed  Google Scholar 

  125. C. Ivins Zito, M.I. Kontaridis, M. Fornaro, G.-S. Feng, A.M. Bennett, SHP-2 regulates the phosphatidylinositide 3?-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis. J. Cell Physiol. 199, 227–236 (2004)

    Article  PubMed  Google Scholar 

  126. D. Xu, C.K. Qu, Protein tyrosine phosphatases in the JAK/STAT pathway. Front. Biosci. 13, 4925–4932 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. C.L. Yu, Y.J. Jin, S.J. Burakoff, Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation. J. Biol. Chem. 275, 599–604 (2000)

    Article  CAS  PubMed  Google Scholar 

  128. M. Gavrieli, N. Watanabe, S.K. Loftin, T.L. Murphy, K.M. Murphy, Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem. Biophys. Res. Commun 312, 1236–1243 (2003)

    Article  CAS  PubMed  Google Scholar 

  129. T. Okazaki, S. Chikuma, Y. Iwai, S. Fagarasan, T. Honjo, A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol. 14, 1212–1218 (2013)

    Article  CAS  PubMed  Google Scholar 

  130. M. You, D.H. Yu, G.S. Feng, Shp-2 Tyrosine Phosphatase Functions as a Negative Regulator of the Interferon-Stimulated Jak/STAT Pathway. Mol. Cell. Biol. 19, 2416–2424 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. S. Xu, J. Hou, X. Liu, C. Han, P. Zhang and X. Cao, Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps–SHP-2 pathway. J. Transl. Med. 10, (2012)

  132. M.I. Kontaridis, S. Eminaga, M. Fornaro, C.I. Zito, R. Sordella, J. Settleman, A.M. Bennett, SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway. Mol. Cell. Biol. 24, 5340–5352 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  133. S.M. Schoenwaelder, L.A. Petch, D. Williamson, R. Shen, G.S. Feng, K. Burridge, The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Curr. Biol. 10, 1523–1526 (2000)

    Article  CAS  PubMed  Google Scholar 

  134. C. Xu, X. Wu, M. Lu, L. Tang, H. Yao, J. Wang, X. Ji, M. Hussain, J. Wu, X. Wu, Protein tyrosine phosphatase 11 acts through RhoA/ROCK to regulate eosinophil accumulation in the allergic airway. FASEB J. 33, 11706–11720 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. H.H. Lee, Z.F. Chang, Regulation of RhoA-dependent ROCKII activation by Shp2. J. Cell Biol. 181, 999–1012 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. J. Bregeon, G. Loirand, P. Pacaud, M. Rolli-Derkinderen, Angiotensin II induces RhoA activation through SHP2-dependent dephosphorylation of the RhoGAP p190A in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 297, C1062–C1070 (2009)

    Article  CAS  PubMed  Google Scholar 

  137. C. Tang, A. Takahashi-Kanemitsu, I. Kikuchi, C. Ben and M. Hatakeyama, Transcriptional Co-activator Functions of YAP and TAZ Are Inversely Regulated by Tyrosine Phosphorylation Status of Parafibromin. iScience 1, 1–15 (2018)

  138. E. Martin, Y.M. Agazie, SHP2 potentiates the oncogenic activity of beta-catenin to promote triple-negative breast cancer. Mol. Cancer Res. 19, 1946–1956 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Q. Zhang, Y. Li, R.R. Zhao, X.Y. Wang, C.L. Fan, Y.Z. Xu, Y.K. Liu, J.B. Li, S.Y. Wang, The gain-of-function mutation E76K in SHP2 promotes CAC tumorigenesis and induces EMT via the Wnt/-catenin signaling pathway. Mol. Carcinog. 57, 619–628 (2018)

    Article  CAS  PubMed  Google Scholar 

  140. J.J. Liu, Y.J. Li, W.S. Chen, Y. Liang, G.W. Wang, M. Zong, K. Kaneko, R.Y. Xu, M. Karin, G.S. Feng, Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic beta-Catenin, PIK3CA and MET. J. Hepatol. 69, 79–88 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. D.M. Xiang, Z. Cheng, H. Liu, X. Wang, T. Han, W. Sun, X.F. Li, W. Yang, C. Chen, M.Y. Xia, N. Liu, S.Y. Yin, G.Z. Jin, T. Lee, L.W. Dong, H.P. Hu, H.Y. Wang, J. Ding, Shp2 promotes liver cancer stem cell expansion by augmenting beta-catenin signaling and predicts chemotherapeutic response of patients. Hepatology 65, 1566–1580 (2017)

    Article  CAS  PubMed  Google Scholar 

  142. W. Yang, J. Wang, D.C. Moore, H. Liang, M. Dooner, Q. Wu, R. Terek, Q. Chen, M.G. Ehrlich, P.J. Quesenberry, B.G. Neel, Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature 499, 491–495 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. W. Guo, Q. Xu, Phosphatase-independent functions of SHP2 and its regulation by small molecule compounds. J. Pharmacol. Sci. 144, 139–146 (2020)

    Article  CAS  PubMed  Google Scholar 

  144. W.M. Yu, T.S. Hawley, R.G. Hawley, C.K. Qu, Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene 22, 5995–6004 (2003)

    Article  CAS  PubMed  Google Scholar 

  145. H. An, W. Zhao, J. Hou, Y. Zhang, Y. Xie, Y. Zheng, H. Xu, C. Qian, J. Zhou, Y. Yu, S. Liu, G. Feng, X. Cao, SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25, 919–928 (2006)

    Article  CAS  PubMed  Google Scholar 

  146. J.X. Yu, R. Deng, H.H. Zhu, S.S. Zhang, C.H. Zhu, M. Montminy, R. Davis, G.S. Feng, Modulation of Fatty Acid Synthase Degradation by Concerted Action of p38 MAP Kinase, E3 Ligase COP1, and SH2-Tyrosine Phosphatase Shp2. J. Biol. Chem. 288, 3823–3830 (2013)

    Article  CAS  PubMed  Google Scholar 

  147. M. Dance, A. Montagner, J.P. Salles, A. Yart, P. Raynal, The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal 20, 453–459 (2008)

    Article  CAS  PubMed  Google Scholar 

  148. M.G. Mohi, B.G. Neel, The role of Shp2 (PTPN11) in cancer. Curr Opin. Genet. Dev. 17, 23–30 (2007)

    Article  CAS  PubMed  Google Scholar 

  149. A. Montagner, A. Yart, M. Dance, B. Perret, J.P. Salles, P. Raynal, A novel role for Gab1 and SHP2 in epidermal growth factor-induced ras activation. J. Biol. Chem. 280, 5350–5360 (2005)

    Article  CAS  PubMed  Google Scholar 

  150. C. Fedele, H. Ran, B. Diskin, W. Wei, J. Jen, M.J. Geer, K. Araki, U. Ozerdem, D.M. Simeone, G. Miller, B.G. Neel, K.H. Tang, SHP2 Inhibition Prevents Adaptive Resistance to MEK Inhibitors in Multiple Cancer Models. Cancer Discov. 8, 1237–1249 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. R.J. Nichols, F. Haderk, C. Stahlhut, C.J. Schulze, G. Hemmati, D. Wildes, C. Tzitzilonis, K. Mordec, A. Marquez, J. Romero, T. Hsieh, A. Zaman, V. Olivas, C. McCoach, C.M. Blakely, Z. Wang, G. Kiss, E.S. Koltun, A.L. Gill, M. Singh, M.A. Goldsmith, J.A.M. Smith, T.G. Bivona, RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat. Cell Biol. 20, 1064–1073 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. G.S. Wong, J. Zhou, J.B. Liu, Z. Wu, X. Xu, T. Li, D. Xu, S.E. Schumacher, J. Puschhof, J. McFarland, C. Zou, A. Dulak, L. Henderson, P. Xu, E. O’Day, R. Rendak, W.L. Liao, F. Cecchi, T. Hembrough, S. Schwartz, C. Szeto, A.K. Rustgi, K.K. Wong, J.A. Diehl, K. Jensen, F. Graziano, A. Ruzzo, S. Fereshetian, P. Mertins, S.A. Carr, R. Beroukhim, K. Nakamura, E. Oki, M. Watanabe, H. Baba, Y. Imamura, D. Catenacci, A.J. Bass, Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat. Med. 24, 968–977 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. J. Schlessinger, Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000)

    Article  CAS  PubMed  Google Scholar 

  154. F. Liotti, N. Kumar, N. Prevete, M. Marotta, D. Sorriento, C. Ierano, A. Ronchi, F.Z. Marino, S. Moretti, R. Colella, E. Puxeddu, S. Paladino, Y. Kano, M. Ohh, S. Scala, R.M. Melillo, PD-1 blockade delays tumor growth by inhibiting an intrinsic SHP2/Ras/MAPK signalling in thyroid cancer cells. J. Exp. Clin. Cancer Res. 40, 22 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. H. Hanafusa, S. Torii, T. Yasunaga, K. Matsumoto, E. Nishida, Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor sprouty. J. Biol. Chem. 279, 22992–22995 (2004)

    Article  CAS  PubMed  Google Scholar 

  156. L.A. Jarvis, S.J. Toering, M.A. Simon, M.A. Krasnow, R.K. Smith-Bolton, Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development 133, 1133–1142 (2006)

    Article  CAS  PubMed  Google Scholar 

  157. Y. Pan, C. Carbe, A. Powers, G.S. Feng, X. Zhang, Sprouty2-modulated Kras signaling rescues Shp2 deficiency during lens and lacrimal gland development. Development 137, 1085–1093 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. X. Liu, H. Zheng, X. Li, S. Wang, H.J. Meyerson, W. Yang, B.G. Neel, C.K. Qu, Gain-of-function mutations of Ptpn11 (Shp2) cause aberrant mitosis and increase susceptibility to DNA damage-induced malignancies. Proc. Natl. Acad. Sci. U. S. A. 113, 984–989 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. S.Q. Zhang, W. Yang, M.I. Kontaridis, T.G. Bivona, G. Wen, T. Araki, J. Luo, J.A. Thompson, B.L. Schraven, M.R. Philips, B.G. Neel, Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 13, 341–355 (2004)

    Article  PubMed  Google Scholar 

  160. Y. Ren, S.S. Meng, L. Mei, Z.J. Zhao, R. Jove, J. Wu, Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor. J. Biol. Chem. 279, 8497–8505 (2004)

    Article  CAS  PubMed  Google Scholar 

  161. C. Fedele, S. Li, K.W. Teng, C.J.R. Foster, D. Peng, H. Ran, P. Mita, M.J. Geer, T. Hattori, A. Koide, Y. Wang, K.H. Tang, J. Leinwand, W. Wang, B. Diskin, J. Deng, T. Chen, I. Dolgalev, U. Ozerdem, G. Miller, S. Koide, K.K. Wong and B.G. Neel, SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. J. Exp. Med. 218, (2021)

  162. C.J. Wu, D.M. O’Rourke, G.S. Feng, G. Johnson, Q. Wang, M.I. Greene, The tyrosine phosphatase SHP-2 is required for mediating phosphatidylinositol 3-kinase/Akt activation by growth factors. Oncogene 20, 6018–6025 (2001)

    Article  CAS  PubMed  Google Scholar 

  163. S.B. Breitkopf, X. Yang, M.J. Begley, M. Kulkarni, Y.H. Chiu, A.B. Turke, J. Lauriol, M. Yuan, J. Qi, J.A. Engelman, P. Hong, M.I. Kontaridis, L.C. Cantley, N. Perrimon, J.M. Asara, A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2. Sci. Rep. 6, 20471 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. N. Hanna, A. Montagner, W.H. Lee, M. Miteva, M. Vidal, M. Vidaud, B. Parfait, P. Raynal, Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1. FEBS Lett. 580, 2477–2482 (2006)

    Article  CAS  PubMed  Google Scholar 

  165. A. Yart, M. Laffargue, P. Mayeux, S. Chretien, C. Peres, N. Tonks, S. Roche, B. Payrastre, H. Chap, P. Raynal, A critical Role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of Ras and mitogen-activated protein kinases by epidermal growth factor. J. Biol. Chem. 276, 8856–8864 (2001)

    Article  CAS  PubMed  Google Scholar 

  166. S. Bhattacharyya, L. Feferman, X. Han, Y. Ouyang, F. Zhang, R.J. Linhardt, J.K. Tobacman, Decline in arylsulfatase B expression increases EGFR expression by inhibiting the protein-tyrosine phosphatase SHP2 and activating JNK in prostate cells. J. Biol. Chem. 293, 11076–11087 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. M. Tartaglia, C.M. Niemeyer, K.M. Shannon, M.L. Loh, SHP-2 and myeloid malignancies. Curr. Opin. Hematol. 11, 44–50 (2004)

    Article  CAS  PubMed  Google Scholar 

  168. S. Bunda, K. Burrell, P. Heir, L. Zeng, A. Alamsahebpour, Y. Kano, B. Raught, Z.Y. Zhang, G. Zadeh, M. Ohh, Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat. Commun. 6, 8859 (2015)

    Article  CAS  PubMed  Google Scholar 

  169. J.S. Rawlings, K.M. Rosler, D.A. Harrison, The JAK/STAT signaling pathway. J. Cell Sci. 117, 1281–1283 (2004)

    Article  CAS  PubMed  Google Scholar 

  170. T.R. Wu, Y.K. Hong, X.D. Wang, M.Y. Ling, A.M. Dragoi, A.S. Chung, A.G. Campbell, Z.Y. Han, G.S. Feng, Y.E. Chin, SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei. J. Biol. Chem. 277, 47572–47580 (2002)

    Article  CAS  PubMed  Google Scholar 

  171. X. Wu, W. Guo, L. Wu, Y. Gu, L. Gu, S. Xu, X. Wu, Y. Shen, Y. Ke, R. Tan, Y. Sun, Q. Xu, Selective sequestration of STAT1 in the cytoplasm via phosphorylated SHP-2 ameliorates murine experimental colitis. J. Immunol. 189, 3497–3507 (2012)

    Article  CAS  PubMed  Google Scholar 

  172. M. Baron, J.L. Davignon, Inhibition of IFN-gamma-induced STAT1 tyrosine phosphorylation by human CMV is mediated by SHP2. J. Immunol. 181, 5530–5536 (2008)

    Article  CAS  PubMed  Google Scholar 

  173. C. Qi, T. Han, H. Tang, K. Huang, J. Min, J. Li, X. Ding and Z. Xu, Shp2 Inhibits Proliferation of Esophageal Squamous Cell Cancer via Dephosphorylation of Stat3. Int. J. Mol. Sci. 18, (2017)

  174. E.A. Bard-Chapeau, S.W. Li, J. Ding, S.S. Zhang, H.H. Zhu, F. Princen, D.D. Fang, T. Han, B. Bailly-Maitre, V. Poli, N.M. Varki, H.Y. Wang, G.S. Feng, Ptpn11/Shp2 Acts as a Tumor Suppressor in Hepatocellular Carcinogenesis. Cancer Cell 19, 629–639 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Y. Hagiwara, S. Miyoshi, K. Fukuda, N. Nishiyama, Y. Ikegami, K. Tanimoto, M. Murata, E. Takahashi, K. Shimoda, T. Hirano, H. Mitamura, S. Ogawa, SHP2-mediated signaling cascade through gp130 is essential for LIF-dependent I CaL, [Ca2+]i transient, and APD increase in cardiomyocytes. J. Mol. Cell Cardiol. 43, 710–716 (2007)

    Article  CAS  PubMed  Google Scholar 

  176. E.P. Feener, F. Rosario, S.L. Dunn, Z. Stancheva, M.G. Myers Jr., Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol. Cell. Biol. 24, 4968–4978 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. S. Ali, Z. Nouhi, N. Chughtai, S. Ali, SHP-2 regulates SOCS-1-mediated Janus kinase-2 ubiquitination/degradation downstream of the prolactin receptor. J. Biol. Chem. 278, 52021–52031 (2003)

    Article  CAS  PubMed  Google Scholar 

  178. T. Lawrence, The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1, a001651 (2009)

  179. M. You, L.M. Flick, D. Yu, G.F. Feng, Modulation of the Nuclear Factor kB Pathway by Shp-2 Tyrosine Phosphatase in Mediating the Induction of Interleukin (IL)-6 by IL-1 or Tumor Necrosis Factor. J. Exp. Med. 193, 101–109 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. W. Ouyang, C. Liu, Y. Pan, Y. Han, L. Yang, J. Xia, F. Xu, SHP2 deficiency promotes Staphylococcus aureus pneumonia following influenza infection. Cell. Prolif. 53, e12721 (2020)

  181. L.F. Zhao, J.Y. Xia, T.T. Li, H. Zhou, W. Ouyang, Z.P. Hong, Y.H. Ke, J. Qian, F. Xu, Shp2 Deficiency Impairs the Inflammatory Response Against Haemophilus influenzae by Regulating Macrophage Polarization. Int. J. Infect. 214, 625–633 (2016)

    CAS  Google Scholar 

  182. L. Karyampudi, P. Lamichhane, J. Krempski, K.R. Kalli, M.D. Behrens, D.M. Vargas, L.C. Hartmann, J.M. Janco, H. Dong, K.E. Hedin, A.B. Dietz, E.L. Goode, K.L. Knutson, PD-1 Blunts the Function of Ovarian Tumor-Infiltrating Dendritic Cells by Inactivating NF-kappaB. Cancer Res. 76, 239–250 (2016)

    Article  CAS  PubMed  Google Scholar 

  183. Y. Zhao, D.L. Harrison, Y. Song, J. Ji, J. Huang and E. Hui, Antigen-Presenting Cell-Intrinsic PD-1 Neutralizes PD-L1 in cis to Attenuate PD-1 Signaling in T Cells. Cell Rep. 24, 379–390 e376 (2018)

  184. H.B. Feng, Y. Chen, Z. Xie, J. Jiang, Y.M. Zhong, W.B. Guo, W.Q. Yan, Z.Y. Lv, D.X. Lu, H.L. Liang, F.P. Xu, J.J. Yang, X.N. Yang, Q. Zhou, D.K. Zhang, Z. Zhang, S.K. Chuai, H.H. Zhang, Y.L. Wu and X.C. Zhang, High SHP2 expression determines the efficacy of PD-1/PD-L1 inhibitors in advanced KRAS mutant non-small cell lung cancer. Thorac Cancer (2021)

  185. M. Garg, M. Wahid, F.D. Khan, Regulation of peripheral and central immunity: Understanding the role of Src homology 2 domain-containing tyrosine phosphatases, SHP-1 & SHP-2. Immunobiology 225, 151847 (2020)

    Article  CAS  PubMed  Google Scholar 

  186. L.E.M. Marengere, P. Waterhouse, G.S. Duncan, H.W. Mittrucker, G.S. Feng, T.W. Mak, Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272, 1170–1173 (1996)

    Article  CAS  PubMed  Google Scholar 

  187. K.M. Lee, E. Chuang, M. Griffin, R. Khattri, D.K. Hong, W. Zhang, D. Straus, L.E. Samelson, C.B. Thompson, J.A. Bluestone, Molecular basis of T cell inactivation by CTLA-4. Science 282, 2263–2266 (1998)

    Article  CAS  PubMed  Google Scholar 

  188. H. Schneider, C.E. Rudd, Tyrosine phosphatase SHP-2 binding to CTLA-4: absence of direct YVKM/YFIP motif recognition. Biochem. Biophys. Res. Commun. 269, 279–283 (2000)

    Article  CAS  PubMed  Google Scholar 

  189. J. Celis-Gutierrez, P. Blattmann, Y. Zhai, N. Jarmuzynski, K. Ruminski, C. Gregoire, Y. Ounoughene, F. Fiore, R. Aebersold, R. Roncagalli, M. Gstaiger and B. Malissen, Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 27, 3315–3330 e3317 (2019)

  190. X. Xu, B. Hou, A. Fulzele, T. Masubuchi, Y. Zhao, Z. Wu, Y. Hu, Y. Jiang, Y. Ma, H. Wang, E.J. Bennett, G. Fu and E. Hui, PD-1 and BTLA regulate T cell signaling differentially and only partially through SHP1 and SHP2. J. Cell Biol. 219, (2020)

  191. K.A. Sheppard, L.J. Fitz, J.M. Lee, C. Benander, J.A. George, J. Wooters, Y. Qiu, J.M. Jussif, L.L. Carter, C.R. Wood, D. Chaudhary, PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett. 574, 37–41 (2004)

    Article  CAS  PubMed  Google Scholar 

  192. M.E. Keir, M.J. Butte, G.J. Freeman, A.H. Sharpe, PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008)

    Article  CAS  PubMed  Google Scholar 

  193. J.L. Riley, PD-1 signaling in primary T cells. Immunol. Rev. 229, 114–125 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. T. Okazaki, A. Maeda, H. Nishimura, T. Kurosaki, T. Honjo, PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. U. S. A. 98, 13866–13871 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Y. Han, D. Liu, L. Li, PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 10, 727–742 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  196. A.S. Tocheva, M. Peled, M. Strazza, K.R. Adam, S. Lerrer, S. Nayak, I. Azoulay-Alfaguter, C.J.R. Foster, E.A. Philips, B.G. Neel, B. Ueberheide, A. Mor, Quantitative phosphoproteomic analysis reveals involvement of PD-1 in multiple T cell functions. J. Biol. Chem. 295, 18036–18050 (2020)

    Article  CAS  PubMed  Google Scholar 

  197. M. Strazza, K. Adam, S. Lerrer, J. Straube, S. Sandigursky, B. Ueberheide, A. Mor, SHP2 Targets ITK Downstream of PD-1 to Inhibit T Cell Function. Inflammation 44, 1529–1539 (2021)

    Article  CAS  PubMed  Google Scholar 

  198. Z.R. Hartman, M.D. Schaller, Y.M. Agazie, The tyrosine phosphatase SHP2 regulates focal adhesion kinase to promote EGF-induced lamellipodia persistence and cell migration. Mol. Cancer Res. 11, 651–664 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. C.Y. Yang, P.W. Chang, W.H. Hsu, H.C. Chang, C.L. Chen, C.C. Lai, W.T. Chiu, H.C. Chen, Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene 38, 4075–4094 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. U. Herbrand, M.R. Ahmadian, p190-RhoGAP as an integral component of the Tiam1/Rac1-induced downregulation of Rho. Biol. Chem. 387, 311–317 (2006)

    Article  CAS  PubMed  Google Scholar 

  201. K.L. Grinnell, B. Casserly, E.O. Harrington, Role of protein tyrosine phosphatase SHP2 in barrier function of pulmonary endothelium. Am. J. Physiol. Lung Cell Mol. Physiol. 298, L361–L370 (2010)

    Article  CAS  PubMed  Google Scholar 

  202. W.T. Arthur, K. Burridge, RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol. Biol. Cell. 12, 2711–2720 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. H.L. Cheng, S.J. Su, L.W. Huang, B.S. Hsieh, Y.C. Hu, T.C. Hung, K.L. Chang, Arecoline induces HA22T/VGH hepatoma cells to undergo anoikis - involvement of STAT3 and RhoA activation. Mol Cancer 9, 126 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  204. F. Biname, A. Bidaud-Meynard, L. Magnan, L. Piquet, B. Montibus, A. Chabadel, F. Saltel, V. Lagree, V. Moreau, Cancer-associated mutations in the protrusion-targeting region of p190RhoGAP impact tumor cell migration. J. Cell Biol. 214, 859–873 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. X.D. Zhou, Y.M. Agazie, Inhibition of SHP2 leads to mesenchymal to epithelial transition in breast cancer cells. Cell Death Differ 15, 988–996 (2008)

    Article  CAS  PubMed  Google Scholar 

  206. F.M. Wang, H.Q. Liu, S.R. Liu, S.P. Tang, L. Yang, G.S. Feng, SHP-2 promoting migration and metastasis of MCF-7 with loss of E-cadherin, dephosphorylation of FAK and secretion of MMP-9 induced by IL-1b in vivo and in vitro. Breast Cancer Res. Treat. 89, 5–14 (2005)

    Article  CAS  PubMed  Google Scholar 

  207. X.Q. Yang, U. Dutta, L.M. Shaw, SHP2 Mediates the Localized Activation of Fyn Downstream of the alpha 6 beta 4 Integrin To Promote Carcinoma Invasion. Mol. Cell. Biol. 30, 5306–5317 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. M.K. Kim, J.Y. Park, Y.N. Kang, Tumorigenic role of YAP in hepatocellular carcinogenesis is involved in SHP2 whose function is different in vitro and in vivo. Pathol. Res. Pract. 214, 1031–1039 (2018)

    Article  CAS  PubMed  Google Scholar 

  209. I. Lee, A. Pecinova, P. Pecina, B.G. Neel, T. Araki, R. Kucherlapati, A.E. Roberts, M. Huttemann, A suggested role for mitochondria in Noonan syndrome. Biochim. Biophys. Acta 1802, 275–283 (2010)

    Article  CAS  PubMed  Google Scholar 

  210. D. Xu, H. Zheng, W.M. Yu and C.K. Qu, Activating Mutations in Protein Tyrosine Phosphatase Ptpn11 (Shp2) Enhance Reactive Oxygen Species Production That Contributes to Myeloproliferative Disorder. Plos One 8, (2013)

  211. H. Zheng, S.H. Li, P. Hsu, C.K. Qu, Induction of a Tumor-associated Activating Mutation in Protein Tyrosine Phosphatase Ptpn11 (Shp2) Enhances Mitochondrial Metabolism, Leading to Oxidative Stress and Senescence. J. Biol. Chem. 288, 25727–25738 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Y.H. Lee, O. Mungunsukh, R.L. Tutino, A.P. Marquez, R.M. Day, Angiotensin-II-induced apoptosis requires regulation of nucleolin and Bcl-xL by SHP-2 in primary lung endothelial cells. J Cell Sci 123, 1634–1643 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. M.N. Okur, J. Ooi, C.W. Fong, N. Martinez, C. Garcia-Dominguez, J.M. Rojas, G. Guy, J.P. O’Bryan, Intersectin 1 enhances Cbl ubiquitylation of epidermal growth factor receptor through regulation of Sprouty2-Cbl interaction. Mol. Cell. Biol. 32, 817–825 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Y. Yuan, Y. Fan, Z. Gao, X. Sun, H. Zhang, Z. Wang, Y. Cui, W. Song, Z. Wang, F. Zhang, R. Niu, SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability via the PI3K/AKT/GSK3beta signaling pathway. Cancer Biol Med 17, 707–725 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Y. Heun, K. Grundler Groterhorst, K. Pogoda, B.F. Kraemer, A. Pfeifer, U. Pohl and H. Mannell, The Phosphatase SHP-2 Activates HIF-1alpha in Wounds In Vivo by Inhibition of 26S Proteasome Activity. Int. J. Mol. Sci. 20, (2019)

  216. C.L. Zuo, L.J. Wang, R.M. Kamalesh, M.E. Bowen, D.C. Moore, M.S. Dooner, A.M. Reginato, Q. Wu, C. Schorl, Y.M. Song, M.L. Warman, B.G. Neel, M.G. Ehrlich and W.T. Yang, SHP2 regulates skeletal cell fate by modifying SOX9 expression and transcriptional activity. Bone Res. 6, (2018)

  217. D. Yan, D. Zhu, X. Zhao, J. Su, SHP-2 restricts apoptosis induced by chemotherapeutic agents via Parkin-dependent autophagy in cervical cancer. Cancer Cell Int 18, 8 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  218. H. Wang, S. Lindsey, I. Konieczna, E. Horvath, L. Bei, W.Q. Huang, E.A. Eklund, Constitutive Activation of SHP2 Protein Tyrosine Phosphatase Cooperates with HoxA10 Overexpression for Progression to Acute Myeloid Leukemia in a Murine Model. Blood 112, 279–279 (2008)

    Google Scholar 

  219. R.Z. Xu, Y. Yu, S. Zheng, X.Y. Zhao, Q.H. Dong, Z.W. He, Y. Liang, Q.H. Lu, Y.M. Fang, X.X. Gan, X.H. Xu, S.Z. Zhang, Q. Dong, X.H. Zhang, G.S. Feng, Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood 106, 3142–3149 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. M. Tartaglia, B.D. Gelb, Germ-line and somatic PTPN11 mutations in human disease. Eur J Med Genet 48, 81–96 (2005)

    Article  PubMed  Google Scholar 

  221. J. Zhang, F. Zhang, R. Niu, Functions of Shp2 in cancer. J Cell Mol Med 19, 2075–2083 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. P. Torres-Ayuso, J. Brognard, Shipping Out MeK Inhibitor Resistance with SHP2 Inhibitors. Cancer Discov. 8, 1210–1212 (2018)

    Article  CAS  PubMed  Google Scholar 

  223. M.S. Alhumaid, M.J. Dasouki, S.O. Ahmed, H. AbalKhail, S. Hagos, S. Wakil, S.K. Hashmi, Comprehensive Genomic Analysis of Noonan Syndrome and Acute Myeloid Leukemia in Adults: A Review and Future Directions. Acta Haematol 143, 583–593 (2020)

    Article  CAS  PubMed  Google Scholar 

  224. M.L. Loh, S. Vattikuti, S. Schubbert, M.G. Reynolds, E. Carlson, K.H. Lieuw, J.W. Cheng, C.M. Lee, D. Stokoe, J.M. Bonifas, N.P. Curtiss, J. Gotlib, S. Meshinchi, M.M. Le Beau, P.D. Emanuel, K.M. Shannon, Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 103, 2325–2331 (2004)

    Article  CAS  PubMed  Google Scholar 

  225. R. Pandey, M. Saxena, R. Kapur, Role of SHP2 in hematopoiesis and leukemogenesis. Curr. Opin. Hematol. 24, 307–313 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. M.A. Razzaque, T. Nishizawa, Y. Komoike, H. Yagi, M. Furutani, R. Amo, M. Kamisago, K. Momma, H. Katayama, M. Nakagawa, Y. Fujiwara, M. Matsushima, K. Mizuno, M. Tokuyama, H. Hirota, J. Muneuchi, T. Higashinakagawa, R. Matsuoka, Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet 39, 1013–1017 (2007)

    Article  CAS  PubMed  Google Scholar 

  227. L. Dong, W.M. Yu, H. Zheng, M.L. Loh, S.T. Bunting, M. Pauly, G. Huang, M. Zhou, H.E. Broxmeyer, D.T. Scadden, C.K. Qu, Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 539, 304–308 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  228. B. Keren, A. Hadchouel, S. Saba, Y. Sznajer, D. Bonneau, B. Leheup, O. Boute, D. Gaillard, D. Lacombe, V. Layet, S. Marlin, G. Mortier, A. Toutain, C. Beylot, C. Baumann, A. Verloes, H. Cave and G. French Collaborative Noonan Study, PTPN11 mutations in patients with LEOPARD syndrome: a French multicentric experience. J. Med. Genet. 41, e117 (2004)

  229. M.E. Bowen, E.D. Boyden, I.A. Holm, B. Campos-Xavier, L. Bonafe, A. Superti-Furga, S. Ikegawa, V. Cormier-Daire, J.V. Bovee, T.C. Pansuriya, S.B. de Sousa, R. Savarirayan, E. Andreucci, M. Vikkula, L. Garavelli, C. Pottinger, T. Ogino, A. Sakai, B.M. Regazzoni, W. Wuyts, L. Sangiorgi, E. Pedrini, M. Zhu, H.P. Kozakewich, J.R. Kasser, J.G. Seidman, K.C. Kurek, M.L. Warman, Loss-of-function mutations in PTPN11 cause metachondromatosis, but not Ollier disease or Maffucci syndrome. PLoS Genet. 7, e1002050 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. L.J. Wang, J.H. Huang, D.C. Moore, C.L. Zuo, Q. Wu, L.Q. Xie, K. von der Mark, X. Yuan, D. Chen, M.L. Warman, M.G. Ehrlich and W.T. Yang, SHP2 Regulates the Osteogenic Fate of Growth Plate Hypertrophic Chondrocytes. Sci. Rep. 7, (2017)

  231. H.K.W. Kim, G.S. Feng, D. Chen, P.D. King, N. Kamiya, Targeted Disruption of Shp2 in Chondrocytes Leads to Metachondromatosis With Multiple Cartilaginous Protrusions. J. Bone Miner. 29, 761–769 (2014)

    Article  CAS  Google Scholar 

  232. M. Bentires-Alj, J.G. Paez, F.S. David, H. Keilhack, B. Halmos, K. Naoki, J.M. Maris, A. Richardson, A. Bardelli, D.J. Sugarbaker, W.G. Richards, J.Y. Du, L. Girard, J.D. Minna, M.L. Loh, D.E. Fisher, V.E. Velculescu, B. Vogelstein, M. Meyerson, W.R. Sellers, B.G. Neel, Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 64, 8816–8820 (2004)

    Article  CAS  PubMed  Google Scholar 

  233. N. Cancer Genome Atlas Research, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008)

  234. D. Miyamoto, M. Miyamoto, A. Takahashi, Y. Yomogita, H. Higashi, S. Kondo, M. Hatakeyama, Isolation of a distinct class of gain-of-function SHP-2 mutants with oncogenic RAS-like transforming activity from solid tumors. Oncogene 27, 3508–3515 (2008)

    Article  CAS  PubMed  Google Scholar 

  235. N. Aceto, N. Sausgruber, H. Brinkhaus, D. Gaidatzis, G. Martiny-Baron, G. Mazzarol, S. Confalonieri, M. Quarto, G. Hu, P.J. Balwierz, M. Pachkov, S.J. Elledge, E. van Nimwegen, M.B. Stadler, M. Bentires-Alj, Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nat. Med. 18, 529–537 (2012)

    Article  CAS  PubMed  Google Scholar 

  236. G. Chan, D. Kalaitzidis, B.G. Neel, The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 27, 179–192 (2008)

    Article  CAS  PubMed  Google Scholar 

  237. J.W. Zheng, S.S. Huang, Y.F. Huang, L. Song, Y. Yin, W.C. Kong, X. Chen, X.N. Ouyang, Expression and prognosis value of SHP2 in patients with pancreatic ductal adenocarcinoma. Tumor Biol. 37, 7853–7859 (2016)

    Article  CAS  PubMed  Google Scholar 

  238. S. Dong, F.Q. Li, Q. Zhang, K.Z. Lv, H.L. Yang, Y. Gao, J.R. Yu, Expression and clinical significance of SHP2 in gastric cancer. J. Int. Med. Res. 40, 2083–2089 (2012)

    Article  CAS  PubMed  Google Scholar 

  239. Y. Nagamura, M. Miyazaki, Y. Nagano, A. Tomiyama, R. Ohki, K. Yanagihara, R. Sakai and H. Yamaguchi, SHP2 as a Potential Therapeutic Target in Diffuse-Type Gastric Carcinoma Addicted to Receptor Tyrosine Kinase Signaling. Cancers (Basel) 13, (2021)

  240. J.S. Kim, O.R. Shin, H.K. Kim, Y.S. Cho, C.H. An, K.W. Lim, S.S. Kim, Overexpression of protein phosphatase non-receptor type 11 (PTPN11) in gastric carcinomas. Dig. Dis. Sci. 55, 1565–1569 (2010)

    Article  CAS  PubMed  Google Scholar 

  241. X. Zhou, J. Coad, B. Ducatman, Y.M. Agazie, SHP2 is up-regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis. Histopathology 53, 389–402 (2008)

    Article  CAS  PubMed  Google Scholar 

  242. Z. Hu, J. Li, Q. Gao, S. Wei, B. Yang, SHP2 overexpression enhances the invasion and metastasis of ovarian cancer in vitro and in vivo. Oncol. Targets Ther. 10, 3881–3891 (2017)

    Article  Google Scholar 

  243. T. Han, D.M. Xiang, W. Sun, N. Liu, H.L. Sun, W. Wen, W.F. Shen, R.Y. Wang, C. Chen, X. Wang, Z. Cheng, H.Y. Li, M.C. Wu, W.M. Cong, G.S. Feng, J. Ding, H.Y. Wang, PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J. Hepatol. 63, 651–660 (2015)

    Article  CAS  PubMed  Google Scholar 

  244. S. Mainardi, A. Mulero-Sanchez, A. Prahallad, G. Germano, A. Bosma, P. Krimpenfort, C. Lieftink, J.D. Steinberg, N. de Wit, S. Goncalves-Ribeiro, E. Nadal, A. Bardelli, A. Villanueva and R. Bernards, SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat. Med. 24, 961-+ (2018)

  245. K. Zhang, H. Zhao, Z. Ji, C. Zhang, P. Zhou, L. Wang, Q. Chen, J. Wang, P. Zhang, Z. Chen, H.H. Zhu, W.Q. Gao, Shp2 promotes metastasis of prostate cancer by attenuating the PAR3/PAR6/aPKC polarity protein complex and enhancing epithelial-to-mesenchymal transition. Oncogene 35, 1271–1282 (2016)

    Article  CAS  PubMed  Google Scholar 

  246. R.Y. Zhang, Z.H. Yu, L. Zeng, S. Zhang, Y. Bai, J. Miao, L. Chen, J. Xie, Z.Y. Zhang, SHP2 phosphatase as a novel therapeutic target for melanoma treatment. Oncotarget 7, 73817–73829 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  247. H. Wang, S. Lindsey, I. Konieczna, L. Bei, E. Horvath, W.Q. Huang, G. Saberwal, E.A. Eklund, Constitutively Active SHP2 Cooperates with HoxA10 Overexpression to Induce Acute Myeloid Leukemia. J. Biol. Chem. 284, 2549–2567 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. H. Hanafusa, S. Torii, T. Yasunaga, E. Nishida, Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4, 850–858 (2002)

    Article  CAS  PubMed  Google Scholar 

  249. Y. Wang, O. Salvucci, H. Ohnuki, A.D. Tran, T. Ha, J.X. Feng, M. DiPrima, H. Kwak, D. Wang, Y. Yu, M. Kruhlak, G. Tosato, Targeting the SHP2 phosphatase promotes vascular damage and inhibition of tumor growth. EMBO Mol Med 13, e14089 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. P. Cai, W. Guo, H. Yuan, Q. Li, W. Wang, Y. Sun, X. Li, Y. Gu, Expression and clinical significance of tyrosine phosphatase SHP-2 in colon cancer. Biomed Pharmacother 68, 285–290 (2014)

    Article  CAS  PubMed  Google Scholar 

  251. F. Yang, M. Xu, S. Wang, L. Song, D. Yu, Y. Li, R. Cao, Z. Xiong, Z. Chen, Q. Zhang, B. Zhao, S. Wang, Gain-Of-Function E76K-Mutant SHP2 Promotes Cell Proliferation, Metastasis, And Tumor Growth In Glioblastoma Through Activation Of The ERK/CREB Pathway. Onco Targets Ther 12, 9435–9447 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. F.C. Geyer, M. Lacroix-Triki, K. Savage, M. Arnedos, M.B. Lambros, A. MacKay, R. Natrajan, J.S. Reis-Filho, beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol 24, 209–231 (2011)

    Article  CAS  PubMed  Google Scholar 

  253. P. Polakis, Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4, (2012)

  254. M. Binnewies, E.W. Roberts, K. Kersten, V. Chan, D.F. Fearon, M. Merad, L.M. Coussens, D.I. Gabrilovich, S. Ostrand-Rosenberg, C.C. Hedrick, R.H. Vonderheide, M.J. Pittet, R.K. Jain, W. Zou, T.K. Howcroft, E.C. Woodhouse, R.A. Weinberg, M.F. Krummel, Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24, 541–550 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423–1437 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Z. Xu, C. Guo, Q. Ye, Y. Shi, Y. Sun, J. Zhang, J. Huang, Y. Huang, C. Zeng, X. Zhang, Y. Ke, H. Cheng, Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization. Nat. Commun. 12, 6310 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. E. Quintana, C.J. Schulze, D.R. Myers, T.J. Choy, K. Mordec, D. Wildes, N.T. Shifrin, A. Belwafa, E.S. Koltun, A.L. Gill, M. Singh, S. Kelsey, M.A. Goldsmith, R. Nichols, J.A.M. Smith, Allosteric Inhibition of SHP2 Stimulates Antitumor Immunity by Transforming the Immunosuppressive Environment. Cancer Res. 80, 2889–2902 (2020)

    Article  CAS  PubMed  Google Scholar 

  258. T.F. Gajewski, H. Schreiber, Y.X. Fu, Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. M. Ahmadzadeh, L.A. Johnson, B. Heemskerk, J.R. Wunderlich, M.E. Dudley, D.E. White, S.A. Rosenberg, Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. K.C. Ohaegbulam, A. Assal, E. Lazar-Molnar, Y. Yao, X. Zang, Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 21, 24–33 (2015)

    Article  CAS  PubMed  Google Scholar 

  261. S. Ulisse, C. Tuccilli, S. Sorrenti, A. Antonelli, P. Fallahi, E. D'Armiento, A. Catania, F. Tartaglia, M.I. Amabile, L. Giacomelli, A. Metere, N. Cornacchini, D. Pironi, G. Carbotta, M. Vergine, M. Monti and E. Baldini, PD-1 Ligand expression in epithelial thyroid cancers: potential clinical implications. Int. J. Mol. Sci. 20, (2019)

  262. L.L. Cunha, E.C. Morari, A.C. Guihen, D. Razolli, R. Gerhard, S. Nonogaki, F.A. Soares, J. Vassallo, L.S. Ward, Infiltration of a mixture of immune cells may be related to good prognosis in patients with differentiated thyroid carcinoma. Clin. Endocrinol. (Oxf.) 77, 918–925 (2012)

    Article  CAS  Google Scholar 

  263. L.L. Cunha, M.A. Marcello, E.C. Morari, S. Nonogaki, F.F. Conte, R. Gerhard, F.A. Soares, J. Vassallo, L.S. Ward, Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation. Endocr. Relat. Cancer 20, 103–110 (2013)

    Article  CAS  PubMed  Google Scholar 

  264. Y. Wang, M. Mohseni, A. Grauel, J.E. Diez, W. Guan, S. Liang, J.E. Choi, M. Pu, D. Chen, T. Laszewski, S. Schwartz, J. Gu, L. Mansur, T. Burks, L. Brodeur, R. Velazquez, S. Kovats, B. Pant, G. Buruzula, E. Deng, J.T. Chen, F. Sari-Sarraf, C. Dornelas, M. Varadarajan, H. Yu, C. Liu, J. Lim, H.X. Hao, X. Jiang, A. Malamas, M.J. LaMarche, F.C. Geyer, M. McLaughlin, C. Costa, J. Wagner, D. Ruddy, P. Jayaraman, N.D. Kirkpatrick, P. Zhang, O. Iartchouk, K. Aardalen, V. Cremasco, G. Dranoff, J.A. Engelman, S. Silver, H. Wang, W.D. Hastings, S. Goldoni, SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci. Rep. 11, 1399 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. X. Wu, Z. Gu, Y. Chen, B. Chen, W. Chen, L. Weng, X. Liu, Application of PD-1 Blockade in Cancer Immunotherapy. Comput. Struct. Biotechnol. J. 17, 661–674 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. A.H. Sharpe, K.E. Pauken, The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018)

    Article  CAS  PubMed  Google Scholar 

  267. K.J. Toral, M.A. Wuenschel, E.P. Black, Genomic data from NSCLC tumors reveals correlation between SHP-2 activity and PD-L1 expression and suggests synergy in combining SHP-2 and PD-1/PD-L1 inhibitors. PLoS ONE 16, e0256416 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. M. Zhao, W. Guo, Y. Wu, C. Yang, L. Zhong, G. Deng, Y. Zhu, W. Liu, Y. Gu, Y. Lu, L. Kong, X. Meng, Q. Xu, Y. Sun, SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade. Acta Pharm. Sin. B 9, 304–315 (2019)

    Article  PubMed  Google Scholar 

  269. D. Chen, H.B. Barsoumian, L. Yang, A.I. Younes, V. Verma, Y. Hu, H. Menon, M. Wasley, F. Masropour, S. Mosaffa, T. Ozgen, K. Klein, M.A. Cortez, J.W. Welsh, SHP-2 and PD-L1 Inhibition Combined with Radiotherapy Enhances Systemic Antitumor Effects in an Anti-PD-1-Resistant Model of Non-Small Cell Lung Cancer. Cancer Immunol. Res. 8, 883–894 (2020)

    Article  CAS  PubMed  Google Scholar 

  270. S. Kleffel, C. Posch, S.R. Barthel, H. Mueller, C. Schlapbach, E. Guenova, C.P. Elco, N. Lee, V.R. Juneja, Q. Zhan, C.G. Lian, R. Thomi, W. Hoetzenecker, A. Cozzio, R. Dummer, M.C. Mihm Jr., K.T. Flaherty, M.H. Frank, G.F. Murphy, A.H. Sharpe, T.S. Kupper, T. Schatton, Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth. Cell 162, 1242–1256 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. H. Li, X. Li, S. Liu, L. Guo, B. Zhang, J. Zhang, Q. Ye, Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology 66, 1920–1933 (2017)

    Article  CAS  PubMed  Google Scholar 

  272. S. Du, N. McCall, K. Park, Q. Guan, P. Fontina, A. Ertel, T. Zhan, A.P. Dicker, B. Lu, Blockade of Tumor-Expressed PD-1 promotes lung cancer growth. Oncoimmunology 7, e1408747 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  273. M. Yu, C. Xu, H. Zhang, J. Lun, L. Wang, G. Zhang, J. Fang, The tyrosine phosphatase SHP2 promotes proliferation and oxaliplatin resistance of colon cancer cells through AKT and ERK. Biochem. Biophys. Res. Commun. 563, 1–7 (2021)

    Article  CAS  PubMed  Google Scholar 

  274. A. Prahallad, G.J. Heynen, G. Germano, S.M. Willems, B. Evers, L. Vecchione, V. Gambino, C. Lieftink, R.L. Beijersbergen, F. Di Nicolantonio, A. Bardelli, R. Bernards, PTPN11 Is a Central Node in Intrinsic and Acquired Resistance to Targeted Cancer Drugs. Cell Rep. 12, 1978–1985 (2015)

    Article  CAS  PubMed  Google Scholar 

  275. L. Xia, L. Wen, S. Wang, SHP2 inhibition benefits epidermal growth factor receptor-mutated non-small cell lung cancer therapy. Mini Rev. Med. Chem. 21, 1314–1321 (2021)

    Article  CAS  PubMed  Google Scholar 

  276. H. Kano, E. Ichihara, H. Watanabe, K. Nishii, C. Ando, T. Nakasuka, K. Ninomiya, Y. Kato, T. Kubo, K. Rai, K. Ohashi, K. Hotta, M. Tabata, Y. Maeda, K. Kiura, SHP2 inhibition enhances the effects of tyrosine kinase inhibitors in preclinical models of treatment-naive ALK-, ROS1-, or EGFR-altered non-small cell lung cancer. Mol. Cancer Ther. 20, 1653–1662 (2021)

    Article  CAS  PubMed  Google Scholar 

  277. L. Xia, F. Yang, X. Wu, S. Li, C. Kan, H. Zheng, S. Wang, SHP2 inhibition enhances the anticancer effect of Osimertinib in EGFR T790M mutant lung adenocarcinoma by blocking CXCL8 loop mediated stemness. Cancer Cell. Int. 21, 337 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. X. Yang, C. Tang, H. Luo, H. Wang, X. Zhou, Shp2 confers cisplatin resistance in small cell lung cancer via an AKT-mediated increase in CA916798. Oncotarget 8, 23664–23674 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  279. Y.N. Chen, M.J. LaMarche, H.M. Chan, P. Fekkes, J. Garcia-Fortanet, M.G. Acker, B. Antonakos, C.H. Chen, Z. Chen, V.G. Cooke, J.R. Dobson, Z. Deng, F. Fei, B. Firestone, M. Fodor, C. Fridrich, H. Gao, D. Grunenfelder, H.X. Hao, J. Jacob, S. Ho, K. Hsiao, Z.B. Kang, R. Karki, M. Kato, J. Larrow, L.R. La Bonte, F. Lenoir, G. Liu, S. Liu, D. Majumdar, M.J. Meyer, M. Palermo, L. Perez, M. Pu, E. Price, C. Quinn, S. Shakya, M.D. Shultz, J. Slisz, K. Venkatesan, P. Wang, M. Warmuth, S. Williams, G. Yang, J. Yuan, J.H. Zhang, P. Zhu, T. Ramsey, N.J. Keen, W.R. Sellers, T. Stams, P.D. Fortin, Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535, 148–152 (2016)

    Article  CAS  PubMed  Google Scholar 

  280. T.A. Ahmed, C. Adamopoulos, Z. Karoulia, X. Wu, R. Sachidanandam, S.A. Aaronson and P.I. Poulikakos, SHP2 Drives Adaptive Resistance to ERK Signaling Inhibition in Molecularly Defined Subsets of ERK-Dependent Tumors. Cell Rep. 26, 65–78 e65 (2019)

  281. Z. Song, M. Wang, Y. Ge, X.P. Chen, Z. Xu, Y. Sun, X.F. Xiong, Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies. Acta Pharm. Sin. B 11, 13–29 (2021)

    Article  CAS  PubMed  Google Scholar 

  282. N.K. Tonks, Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell. Biol. 7, 833–846 (2006)

    Article  CAS  PubMed  Google Scholar 

  283. A. Mullard, Phosphatases start shedding their stigma of undruggability. Nat. Rev. Drug Discov. 17, 847–849 (2018)

    Article  CAS  PubMed  Google Scholar 

  284. M.J. LaMarche, M. Acker, A. Argintaru, D. Bauer, J. Boisclair, H. Chan, C.H. Chen, Y.N. Chen, Z. Chen, Z. Deng, M. Dore, D. Dunstan, J. Fan, P. Fekkes, B. Firestone, M. Fodor, J. Garcia-Fortanet, P.D. Fortin, C. Fridrich, J. Giraldes, M. Glick, D. Grunenfelder, H.X. Hao, M. Hentemann, S. Ho, A. Jouk, Z.B. Kang, R. Karki, M. Kato, N. Keen, R. Koenig, L.R. LaBonte, J. Larrow, G. Liu, S. Liu, D. Majumdar, S. Mathieu, M.J. Meyer, M. Mohseni, R. Ntaganda, M. Palermo, L. Perez, M. Pu, T. Ramsey, J. Reilly, P. Sarver, W.R. Sellers, M. Sendzik, M.D. Shultz, J. Slisz, K. Slocum, T. Smith, S. Spence, T. Stams, C. Straub, V. Tamez Jr., B.B. Toure, C. Towler, P. Wang, H. Wang, S.L. Williams, F. Yang, B. Yu, J.H. Zhang, S. Zhu, Identification of TNO155, an allosteric SHP2 inhibitor for the treatment of cancer. J. Med. Chem. 63, 13578–13594 (2020)

    Article  CAS  PubMed  Google Scholar 

  285. L.J. He, Y.Y. Li, X. Huang, H.Q. Cheng, Y.H. Ke, L.R. Wang, The prognostic significance of SHP2 and its binding protein hook1 in non-small cell lung cancer. OncoTargets Ther. 12, 5897–5906 (2019)

    Article  CAS  Google Scholar 

  286. F.M. Ferguson, N.S. Gray, Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov. 17, 353–377 (2018)

    Article  CAS  PubMed  Google Scholar 

  287. X. Sun, Y. Ren, S. Gunawan, P. Teng, Z. Chen, H.R. Lawrence, J. Cai, N.J. Lawrence, J. Wu, Selective inhibition of leukemia-associated SHP2E69K mutant by the allosteric SHP2 inhibitor SHP099. Leukemia 32, 1246–1249 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. V.E. Schneeberger, Y. Ren, N. Luetteke, Q. Huang, L. Chen, H.R. Lawrence, N.J. Lawrence, E.B. Haura, J.M. Koomen, D. Coppola, J. Wu, Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma. Oncotarget 6, 6191–6202 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  289. S. Butterworth, M. Overduin, A.J. Barr, Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Future Med. Chem. 6, 1423–1437 (2014)

    Article  CAS  PubMed  Google Scholar 

  290. H. Ran, R. Tsutsumi, T. Araki, B.G. Neel, Sticking it to cancer with molecular glue for SHP2. Cancer Cell 30, 194–196 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. R. Frankson, Z.H. Yu, Y.P. Bai, Q.L. Li, R.Y. Zhang, Z.Y. Zhang, Therapeutic targeting of oncogenic tyrosine phosphatases. Cancer Res. 77, 5701–5705 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. L.F. Zeng, R.Y. Zhang, Z.H. Yu, S. Li, L. Wu, A.M. Gunawan, B.S. Lane, R.S. Mali, X. Li, R.J. Chan, R. Kapur, C.D. Wells, Z.Y. Zhang, Therapeutic potential of targeting the oncogenic SHP2 phosphatase. J. Med. Chem. 57, 6594–6609 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Z. Hartman, W.J. Geldenhuys, Y.M. Agazie, Novel small-molecule inhibitor for the oncogenic tyrosine phosphatase SHP2 with anti-breast cancer cell effects. ACS Omega 5, 25113–25124 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. P. Sarver, M. Acker, J.T. Bagdanoff, Z. Chen, Y.N. Chen, H. Chan, B. Firestone, M. Fodor, J. Fortanet, H. Hao, M. Hentemann, M. Kato, R. Koenig, L.R. LaBonte, G. Liu, S. Liu, C. Liu, E. McNeill, M. Mohseni, M. Sendzik, T. Stams, S. Spence, V. Tamez, R. Tichkule, C. Towler, H. Wang, P. Wang, S.L. Williams, B. Yu, M.J. LaMarche, 6-Amino-3-methylpyrimidinones as potent, selective, and orally efficacious SHP2 inhibitors. J. Med. Chem. 62, 1793–1802 (2019)

    Article  CAS  PubMed  Google Scholar 

  295. X. Wu, G. Xu, X. Li, W. Xu, Q. Li, W. Liu, K.A. Kirby, M.L. Loh, J. Li, S.G. Sarafianos, C.K. Qu, Small molecule inhibitor that stabilizes the autoinhibited conformation of the oncogenic tyrosine phosphatase SHP2. J. Med. Chem. 62, 1125–1137 (2019)

    Article  PubMed  Google Scholar 

  296. J.R. LaRochelle, M. Fodor, J.M. Ellegast, X.X. Liu, V. Vemulapalli, M. Mohseni, T. Stams, S.J. Buhrlage, K. Stegmaier, M.J. LaMarche, M.G. Acker, S.C. Blacklow, Identification of an allosteric benzothiazolopyrimidone inhibitor of the oncogenic protein tyrosine phosphatase SHP2. Bioorg. Med. Chem. 25, 6479–6485 (2017)

    Article  CAS  PubMed  Google Scholar 

  297. L. Zhou, Y. Feng, Y.C. Ma, Z. Zhang, J.W. Wu, S. Du, W.Y. Li, X.H. Lu, Y. Ma, R.L. Wang, Exploring the mechanism of the potent allosteric inhibitor compound2 on SHP2 (WT) and SHP2(F285S) by molecular dynamics study. J. Mol. Graph Model 103, 107807 (2021)

    Article  CAS  PubMed  Google Scholar 

  298. Y.T. Sun, B.A. Meyers, B. Czako, P. Leonard, F. Mseeh, A.L. Harris, Q. Wu, S. Johnson, C.A. Parker, J.B. Cross, M.E. Di Francesco, B.J. Bivona, C.A. Bristow, J.P. Burke, C.C. Carrillo, C.L. Carroll, Q. Chang, N.P. Feng, G. Gao, S. Gera, V. Giuliani, J.K. Huang, Y.Y. Jiang, Z.J. Kang, J.J. Kovacs, C.Y. Liu, A.M. Lopez, X.Y. Ma, P.K. Mandal, T. McAfoos, M.A. Miller, R.A. Mullinax, M. Peoples, V. Ramamoorthy, S. Seth, N.D. Spencer, E. Suzuki, C.C. Williams, S.S. Yu, A.M. Zuniga, G.F. Draetta, J.R. Marszalek, T.P. Heffernan, N.E. Kohl, P. Jones, Allosteric SHP2 inhibitor, IACS-13909, overcomes EGFR-dependent and EGFR-independent resistance mechanisms toward Osimertinib. Cancer Res. 80, 4840–4853 (2020)

    Article  CAS  PubMed  Google Scholar 

  299. C. Liu, H. Lu, H. Wang, A. Loo, X. Zhang, G. Yang, C. Kowal, S. Delach, Y. Wang, S. Goldoni, W.D. Hastings, K. Wong, H. Gao, M.J. Meyer, S.E. Moody, M.J. LaMarche, J.A. Engelman, J.A. Williams, P.S. Hammerman, T.J. Abrams, M. Mohseni, G. Caponigro, H.X. Hao, Combinations with allosteric SHP2 inhibitor TNO155 to block receptor Tyrosine Kinase signaling. Clin Cancer Res. 27, 342–354 (2021)

    Article  CAS  PubMed  Google Scholar 

  300. M. Wang, J. Lu, M. Wang, C.Y. Yang, S. Wang, Discovery of SHP2-D26 as a first, potent, and effective PROTAC degrader of SHP2 protein. J. Med. Chem. 63, 7510–7528 (2020)

    Article  CAS  PubMed  Google Scholar 

  301. X. Yang, Z. Wang, Y. Pei, N. Song, L. Xu, B. Feng, H. Wang, X. Luo, X. Hu, X. Qiu, H. Feng, Y. Yang, Y. Zhou, J. Li, B. Zhou, Discovery of thalidomide-based PROTAC small molecules as the highly efficient SHP2 degraders. Eur. J. Med. Chem. 218, 113341 (2021)

    Article  CAS  PubMed  Google Scholar 

  302. M. Zheng, Y. Liu, C. Wu, K. Yang, Q. Wang, Y. Zhou, L. Chen, H. Li, Novel PROTACs for degradation of SHP2 protein. Bioorg. Chem. 110, 104788 (2021)

    Article  CAS  PubMed  Google Scholar 

  303. Y. Zhang, Z. Qi, W. Wang, L. Wang, F. Cao, L. Zhao, X. Fang, Isovitexin Inhibits Ginkgolic Acids-Induced Inflammation Through Downregulating SHP2 Activation. Front. Pharmacol. 12, 630320 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Y.C. Wang, D.W. Wu, T.C. Wu, L. Wang, C.Y. Chen, H. Lee, Dioscin overcome TKI resistance in EGFR-mutated lung adenocarcinoma cells via down-regulation of tyrosine phosphatase SHP2 expression. Int. J. Biol. Sci. 14, 47–56 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  305. S.J. Kwon, D. Ahn, H.M. Yang, H.J. Kang and S.J. Chung, Polyphyllin D Shows Anticancer Effect through a Selective Inhibition of Src Homology Region 2-Containing Protein Tyrosine Phosphatase-2 (SHP2). Molecules 26, (2021)

  306. R. Tsutsumi, H. Ran, B.G. Neel, Off-target inhibition by active site-targeting SHP2 inhibitors. FEBS Open Bio 8, 1405–1411 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. D. Shen, W. Chen, J. Zhu, G. Wu, R. Shen, M. Xi, H. Sun, Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. Eur. J. Med. Chem. 190, 112117 (2020)

    Article  CAS  PubMed  Google Scholar 

  308. Q. Liu, J. Qu, M. Zhao, Q. Xu, Y. Sun, Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol. Res. 152, 104595 (2020)

    Article  CAS  PubMed  Google Scholar 

  309. R.A.P. Padua, Y. Sun, I. Marko, W. Pitsawong, J.B. Stiller, R. Otten, D. Kern, Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Nat. Commun. 9, 4507 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  310. J.T. Bagdanoff, Z. Chen, M. Acker, Y.N. Chen, H. Chan, M. Dore, B. Firestone, M. Fodor, J. Fortanet, M. Hentemann, M. Kato, R. Koenig, L.R. LaBonte, S. Liu, M. Mohseni, R. Ntaganda, P. Sarver, T. Smith, M. Sendzik, T. Stams, S. Spence, C. Towler, H. Wang, P. Wang, S.L. Williams, M.J. LaMarche, Optimization of fused bicyclic allosteric SHP2 inhibitors. J. Med. Chem. 62, 1781–1792 (2019)

    Article  CAS  PubMed  Google Scholar 

  311. M. Fodor, E. Price, P. Wang, H.Y. Lu, A. Argintaru, Z.L. Chen, M. Glick, H.X. Hao, M. Kato, R. Koenig, J.R. LaRochelle, G. Liu, E. McNeill, D. Majumdar, G.A. Nishiguchi, L.B. Perez, G. Paris, C.M. Quinn, T. Ramsey, M. Sendzik, M.D. Shultz, S.L. Williams, T. Stams, S.C. Blacklow, M.G. Acker, M.J. LaMarche, Dual allosteric inhibition of SHP2 phosphatase. ACS Chem. Biol. 13, 647–656 (2018)

    Article  CAS  PubMed  Google Scholar 

  312. S.I. Ou, M. Koczywas, S. Ulahannan, P. Janne, J. Pacheco, H. Burris, C. McCoach, J.S. Wang, M. Gordon, E. Haura, J.W. Riess, V. Zhu, K. Ng, S.G. Eckhardt, A. Capasso, R. Dua, A. Chen, Z. Wang, J. Hayes, R. Nichols, T. Bivona, A12 the SHP2 inhibitor RMC-4630 in patients with KRAS-mutant non-small cell lung cancer: preliminary evaluation of a first-in-man phase 1 clinical trial. J. Thorac. Oncol. 15, S15–S16 (2020)

    Article  Google Scholar 

  313. M. Toure, C.M. Crews, Small-molecule PROTACS: new approaches to protein degradation. Angew. Chem. Int. Ed. Engl. 55, 1966–1973 (2016)

    Article  CAS  PubMed  Google Scholar 

  314. Q. Zhao, T. Lan, S. Su, Y. Rao, Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem. Commun. (Camb.) 55, 369–372 (2019)

    Article  CAS  Google Scholar 

  315. S. Gu, D. Cui, X. Chen, X. Xiong, Y. Zhao, PROTACs: An emerging targeting technique for protein degradation in drug discovery. BioEssays 40, e1700247 (2018)

    Article  PubMed  Google Scholar 

  316. T.K. Neklesa, J.D. Winkler, C.M. Crews, Targeted protein degradation by PROTACs. Pharmacol. Ther. 174, 138–144 (2017)

    Article  CAS  PubMed  Google Scholar 

  317. K. Raina, C.M. Crews, Targeted protein knockdown using small molecule degraders. Curr. Opin. Chem. Biol. 39, 46–53 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. V. Vemulapalli, K.A. Donovan, T.C.M. Seegar, J.M. Rogers, M. Bae, R.J. Lumpkin, R. Cao, M.T. Henke, S.S. Ray, E.S. Fischer, G.D. Cuny, S.C. Blacklow, Targeted degradation of the oncogenic phosphatase SHP2. Biochemistry 60, 2593–2609 (2021)

    Article  CAS  PubMed  Google Scholar 

  319. Z.Z. Fan, Y.H. Tian, Z.P. Chen, L. Liu, Q. Zhou, J.J. He, J. Coleman, C.J. Dong, N. Li, J.Q. Huang, C.Q. Xu, Z.M. Zhang, S. Gao, P.H. Zhou, K. Ding and L. Chen, Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. Embo Mol. Med. 12, (2020)

  320. R.K.P. Tripathi, S.R. Ayyannan, Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem. Biol. Drug Des. 97, 721–773 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research Program (Project No. 2018YFE0195100 for H.-M. L.) and National Natural Science Foundation of China (Project No. 82020108030 for H.-M.L.).

Funding

National Key Research Program: Project No. 2018YFE0195100.

National Natural Science Foundation of China: Project No. 82020108030.

Author information

Authors and Affiliations

Authors

Contributions

Moges Dessale Asmamaw performed the literature search and wrote the draft manuscript. Hong-Min Liu and Li-Rong Zhang conceived the idea. All the authors critically reviewed the manuscript and approved the final version for publication.

Corresponding authors

Correspondence to Li-Rong Zhang or Hong-Min Liu.

Ethics declarations

Ethical Approval and Consent to participate

Not applicable.

Consent for publication

All authors read and approved the final version of the manuscript for publication.

Competing interests

There is no competing interest to declare.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asmamaw, M.D., Shi, XJ., Zhang, LR. et al. A comprehensive review of SHP2 and its role in cancer. Cell Oncol. 45, 729–753 (2022). https://doi.org/10.1007/s13402-022-00698-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00698-1

Keywords

Navigation