Skip to main content

Advertisement

Log in

Protein kinase CK2, an important regulator of the inflammatory response?

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Casein kinase 2 (CK2) is a highly conserved serine–threonine kinase that uses both adenosine triphosphate and guanosine triphosphate as phosphate donors. This constitutively active and ubiquitously expressed enzyme is often present as a tetrameric holoenzyme complex of two catalytic subunits (α and/or α’) and two regulatory β subunits. The enzyme is known to phosphorylate more than 300 substrates and controls a wide range of processes, including the regulation of cell cycle, apoptosis, transformation, and circadian rhythm. Several lines of recent evidence also suggest a potentially important role for CK2 in the control of the inflammatory response. This review will give an overview of CK2 and its regulation and describe the evidence implicating its role in inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15

    Article  PubMed  CAS  Google Scholar 

  2. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368

    Article  PubMed  CAS  Google Scholar 

  3. Faust M, Montenarh M (2000) Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res 301:329–340

    Article  PubMed  CAS  Google Scholar 

  4. Wilson LK, Dhillon N, Thorner J, Martin GS (1997) Casein kinase II catalyzes tyrosine phosphorylation of the yeast nucleolar immunophilin Fpr3. J Biol Chem 272:12961–12967

    Article  PubMed  CAS  Google Scholar 

  5. Buchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB, Cochet C, Issinger OG, Boldyreff B (2003) Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 23:908–915

    Article  PubMed  CAS  Google Scholar 

  6. Xu X, Toselli PA, Russell LD, Seldin DC (1999) Globozoospermia in mice lacking the casein kinase II alpha’ catalytic subunit. Nat Genet 23:118–121

    Article  PubMed  CAS  Google Scholar 

  7. Lou DY, Dominguez I, Toselli P, Landesman-Bollag E, O’Brien C, Seldin DC (2008) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol 28:131–139

    Article  PubMed  CAS  Google Scholar 

  8. Canton DA, Lichfield DW (2006) The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 18:267–275

    Article  PubMed  CAS  Google Scholar 

  9. Duncan JS, Litchfield DW (2008) Too much of a good thing the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–47

    PubMed  CAS  Google Scholar 

  10. Shi X, Potvin B, Huang T, Hilgard P, Spray DC, Suadicani SO, Wolkoff AW, Stanley P, Stockert RJ (2001) A novel casein kinase 2 alpha-subunit regulates membrane protein traffic in the human hepatoma cell line HuH-7. J Biol Chem 276:2075–2082

    Article  PubMed  CAS  Google Scholar 

  11. Graham KC, Litchfield DW (2000) The regulatory beta subunit of protein kinase CK2 mediates formation of tetrameric CK2 complexes. J Biol Chem 275:5003–5010

    Article  PubMed  CAS  Google Scholar 

  12. Filhol O, Martiel JL, Cochet C (2004) Protein kinase CK2: a new view of an old molecular complex. EMBO Rep 5:351–355

    Article  PubMed  CAS  Google Scholar 

  13. Li X, Guan B, Maghami S, Bieberich CJ (2006) NKX3.1 is regulated by protein kinase CK2 in prostate tumor cells. Mol Cell Biol 26:3008–3017

    Article  PubMed  CAS  Google Scholar 

  14. Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331

    Article  PubMed  CAS  Google Scholar 

  15. Bolanos-Garcia VM, Fernandez-Recio J, Allende JE, Blundell TL (2006) Identifying interaction motifs in CK2beta-a ubiquitous kinase regulatory subunit. Trends Biochem Sci 31:654–661

    Article  PubMed  CAS  Google Scholar 

  16. Chantalat L, Leroy D, Filhol O, Nueda A, Benitez MJ, Chambaz EM, Cochet C, Dideberg O (1999) Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc-mediated dimerization. EMBO J 18:2930–2940

    Article  PubMed  CAS  Google Scholar 

  17. Orlandini M, Semplici F, Ferruzzi R, Meggio F, Pinna LA, Oliviero S (1998) Protein kinase CK2α’ is induced by serum as a delayed early gene and cooperates with Ha–Ras in fibroblast transformation. J Biol Chem 273:21291–21297

    Article  PubMed  CAS  Google Scholar 

  18. Ackerman P, Glover CV, Osheroff N (1990) Stimulation of casein kinase II by epidermal growth factor: relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit. Proc Natl Acad Sci U S A 87:821–825

    Article  PubMed  CAS  Google Scholar 

  19. Bosc DG, Slominski E, Sichler C, Litchfield DW (1995) Phosphorylation of casein kinase II by p34cdc2. Identification of phosphorylation sites using phosphorylation site mutants in vitro. J Biol Chem 270:25872–25878

    Article  PubMed  CAS  Google Scholar 

  20. Zhang C, Vilk G, Canton DA, Litchfield DW (2002) Phosphorylation regulates the stability of the regulatory CK2β subunit. Oncogene 21:3754–3764

    Article  PubMed  CAS  Google Scholar 

  21. Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G (1996) Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 271:24781–24787

    Article  PubMed  CAS  Google Scholar 

  22. Skjerpen CS, Nilsen T, Wesche J, Olsnes S (2002) Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity. EMBO J 21:4058–4069

    Article  PubMed  CAS  Google Scholar 

  23. Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12:226–230

    Article  PubMed  CAS  Google Scholar 

  24. Guo C, Yu S, Davis AT, Ahmed K (1999) Nuclear matrix targeting of the protein kinase CK2 signal as a common downstream response to androgen or growth factor stimulation of prostate cancer cells. Cancer Res 59:1146–1151

    PubMed  CAS  Google Scholar 

  25. Olsten ME, Canton DA, Zhang C, Walton PA, Litchfield DW (2004) The pleckstrin homology domain of CK2 interacting protein-1 is required for interactions and recruitment of protein kinase CK2 to the plasma membrane. J Biol Chem 279:42114–42127

    Article  PubMed  CAS  Google Scholar 

  26. Martel V, Filhol O, Nueda A, Gerber D, Benitez MJ, Cochet C (2001) Visualization and molecular analysis of nuclear import of protein kinase CK2 in living cells. Mol Cell Biochem 227:81–90

    Article  PubMed  CAS  Google Scholar 

  27. Carroll D, Marshak DR (1989) Serum-stimulated cell growth causes oscillations in casein kinase II activity. J Biol Chem 264:7345–7348

    PubMed  CAS  Google Scholar 

  28. Lodie TA, Savendra R Jr, Golenbock DT, Van Beveren CP, Maki RA, Fenton MJ (1997) Stimulation of macrophages by lipopolysaccharide alters the phosphorylation state, conformation, and function of PU.1 via activation of casein kinase II. J Immunol 158:1848–1856

    PubMed  CAS  Google Scholar 

  29. Van Lint J, Agostinis P, Vandevoorde V, Haegeman G, Fiers W, Merlevede W, Vandenheede JR (1992) Tumor necrosis factor stimulates serine/threonine protein kinases in Swiss 3T3 and L929 cells. Implications of casein kinase-2 and extracellular signal-regulated kinases in the tumor necrosis factor signal transduction pathway. J Biol Chem 267:25916–25921

    PubMed  Google Scholar 

  30. Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL (2000) Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem 275:16569–16573

    Article  PubMed  CAS  Google Scholar 

  31. Parhar K, Morse J, Salh B (2007) The role of protein kinase CK2 in intestinal epithelial cell inflammatory signaling. Int J Colorectal Dis 22:601–609

    Article  PubMed  Google Scholar 

  32. Zdunek M, Silbiger S, Lei J, Neugarten J (2001) Protein kinase CK2 mediates TGF-beta1-stimulated type IV collagen gene transcription and its reversal by estradiol. Kidney Int 60:2097–2108

    Article  PubMed  CAS  Google Scholar 

  33. Singh NN, Ramji DP (2006) Transforming growth factor-beta-induced expression of the apolipoprotein E gene requires c-Jun N-terminal kinase, p38 kinase, and casein kinase 2. Arterioscler Thromb Vasc Biol 26:1323–1329

    Article  PubMed  CAS  Google Scholar 

  34. Mead JR, Hughes TR, Irvine SA, Singh NN, Ramji DP (2003) Interferon-gamma stimulates the expression of the inducible cAMP early repressor in macrophages through the activation of casein kinase 2. A potentially novel pathway for interferon-gamma-mediated inhibition of gene transcription. J Biol Chem 278:17741–17751

    Article  PubMed  CAS  Google Scholar 

  35. Harvey EJ, Li N, Ramji DP (2007) Critical role for casein kinase 2 and phosphoinositide-3-kinase in the interferon-gamma-induced expression of monocyte chemoattractant protein-1 and other key genes implicated in atherosclerosis. Arterioscler Thromb Vasc Biol 27:806–812

    Article  PubMed  CAS  Google Scholar 

  36. Higashi K, Inagaki Y, Fujimori K, Nakao A, Kaneko H, Nakatsuka I (2003) Interferon-gamma interferes with transforming growth factor-beta signalling through direct interaction of YB-1 with Smad3. J Biol Chem 44:43470–43479

    Article  CAS  Google Scholar 

  37. Yamaguchi Y, Wada T, Suzuki F, Takagi T, Hasegawa J, Handa H (1998) Casein kinase II interacts with the bZIP domains of several transcription factors. Nucleic Acids Res 26:3854–3861

    Article  PubMed  CAS  Google Scholar 

  38. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62

    Article  PubMed  CAS  Google Scholar 

  39. Li Q, Verma IM (2002) NF-kB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  PubMed  CAS  Google Scholar 

  40. McElhinny JA, Trushin SA, Bren GD, Chester N, Paya CV (1996) Casein kinase II phosphorylates I kappa B alpha at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol Cell Biol 16:899–906

    PubMed  CAS  Google Scholar 

  41. Schwarz EM, Van Antwerp D, Verma IM (1996) Constitutive phosphorylation of IkappaBalpha by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IkappaBalpha. Mol Cell Biol 16:3554–3559

    PubMed  CAS  Google Scholar 

  42. Shen J, Channavajhala P, Seldin DC, Sonenshein GE (2001) Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IkappaBalpha. J Immunol 167:4919–4925

    PubMed  CAS  Google Scholar 

  43. Kato T Jr, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol Cell 12:829–839

    Article  PubMed  CAS  Google Scholar 

  44. Packman LC, Kubota K, Parker J, Gay NJ (1997) Casein kinase II phosphorylates Ser468 in the PEST domain of the Drosophila IkappaB homologue cactus. FEBS Lett 400:45–50

    Article  PubMed  CAS  Google Scholar 

  45. Nogalski MT, Podduturi JP, DeMeritt IB, Milford LE, Yurochko AD (2007) The human cytomegalovirus virion possesses an activated casein kinase II that allows for the rapid phosphorylation of the inhibitor of NF-kappaB, IkappaBalpha. J Virol 81:5305–5314

    Article  PubMed  CAS  Google Scholar 

  46. Bird TA, Schooley K, Dower SK, Hagen H, Virca GD (1997) Activation of nuclear transcription factor NF-kappaB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J Biol Chem 272:32606–32612

    Article  PubMed  CAS  Google Scholar 

  47. Chantome A, Pance A, Gauthier N, Candroux D, Chenu J, Solary E, Jeannin JF, Reveneau S (2004) Casein kinase II-mediated phosphorylation of NF-kappaB p65 subunit enhances inducible nitric-oxide synthase gene transcription in vivo. J Biol Chem 279:23953–23960

    Article  PubMed  CAS  Google Scholar 

  48. Wang D, Westerheide SD, Hanson JL, Baldwin AS Jr (2000) Tumor necrosis factor-alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 275:32592–32597

    Article  PubMed  CAS  Google Scholar 

  49. Kweon SM, Wang B, Rixter D, Lim JH, Koga T, Ishinaga H, Chen LF, Jono H, Xu H, Li JD (2007) Synergistic activation of NF-kappaB by nontypeable H. influenzae and S. pneumoniae is mediated by CK2, IKKbeta-IkappaBalpha, and p38 MAPK. Biochem Biophys Res Commun 351:368–375

    Article  CAS  Google Scholar 

  50. Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661

    Article  PubMed  CAS  Google Scholar 

  51. Saeki K, You A, Takaku F (1999) Cell-cycle-regulated phosphorylation of cAMP response element-binding protein: identification of novel phosphorylation sites. Biochem J 338:49–54

    Article  PubMed  CAS  Google Scholar 

  52. Horiuchi J, Jiang W, Zhou H, Wu P, Yin JC (2004) Phosphorylation of conserved casein kinase sites regulate cAMP-response element-binding protein DNA binding in Drosophila. J Biol Chem 279:12117–12125

    Article  PubMed  CAS  Google Scholar 

  53. de Groot RP, den Hertog J, Vandenheede JR, Goris J, Sassone-Corsi P (1993) Multiple and cooperative phosphorylation events regulate the CREM activator function. EMBO J 12:3903–3911

    PubMed  Google Scholar 

  54. Lin R, Hiscott J (1999) A role for casein kinase II phosphorylation in the regulation of IRF-1 transcriptional activity. Mol Cell Biochem 191:169–180

    Article  PubMed  CAS  Google Scholar 

  55. Giraudo E, Primo L, Audero E, Gerber HP, Koolwijk P, Soker S, Klagsbrun M, Ferrara N, Bussolino F (1998) Tumor necrosis factor-alpha regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells. J Biol Chem 273:22128–22135

    Article  PubMed  CAS  Google Scholar 

  56. Armstrong SA, Barry DA, Leggett RW, Mueller CR (1997) Casein kinase II-mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity. J Biol Chem 272:13489–13495

    Article  PubMed  CAS  Google Scholar 

  57. Hughes TR, Tengku-Muhammad TS, Irvine SA, Ramji DP (2002) A novel role of Sp1 and Sp3 in the interferon-γ-mediated suppression of macrophage lipoprotein lipase gene transcription. J Biol Chem 277:11097–11106

    Article  PubMed  CAS  Google Scholar 

  58. Dunzendorfer S, Lee HK, Tobias PS (2004) Flow-dependent regulation of endothelial Toll-like receptor 2 expression through inhibition of SP1 activity. Circ Res 95:684–691

    Article  PubMed  CAS  Google Scholar 

  59. Borden P, Heller RA (1997) Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases. Crit Rev Eukaryot Gene Expr 7:159–178

    PubMed  CAS  Google Scholar 

  60. Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377

    Article  PubMed  CAS  Google Scholar 

  61. Gauthier-Rouviére C, Basset M, Blanchard JM, Cavadore JC, Fernandez A, Lamb NJ (1991) Casein kinase II induces c-fos expression via the serum response element pathway and p67SRF phosphorylation in living fibroblasts. EMBO J 10:2921–2930

    PubMed  Google Scholar 

  62. Lin A, Frost J, Deng T, Smeal T, al-Alawi N, Kikkawa U, Hunter T, Brenner D, Karin M (1992) Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell 70:777–789

    Article  PubMed  CAS  Google Scholar 

  63. Moussazadeh M, Greene JJ (2000) Redox regulation of casein kinase II autophosphorylation and its effect on Jun-DNA binding. Cell Mol Biol 46:1265–1275

    PubMed  CAS  Google Scholar 

  64. Fritz G, Kaina B (1999) Phosphorylation of the DNA repair protein APE/REF-1 by CKII affects redox regulation of AP-1. Oncogene 18:1033–1040

    Article  PubMed  CAS  Google Scholar 

  65. Ulery PG, Nestler EJ (2007) Regulation of DeltaFosB transcriptional activity by Ser27 phosphorylation. Eur J Neurosci 25:224–230

    Article  PubMed  Google Scholar 

  66. Jain N, Mahendran R, Philp R, Guy GR, Tan YH, Cao X (1996) Casein kinase II associates with Egr-1 and acts as a negative modulator of its DNA binding and transcription activities in NIH 3T3 cells. J Biol Chem 271:13530–13536

    Article  PubMed  CAS  Google Scholar 

  67. Srivastava S, Weitzmann MN, Kimble RB, Rizzo M, Zahner M, Milbrandt J, Ross FP, Pacifici R (1998) Estrogen blocks M-CSF gene expression and osteoclast formation by regulating phosphorylation of Egr-1 and its interaction with Sp1. J Clin Invest 102:1850–1859

    Article  PubMed  CAS  Google Scholar 

  68. Ramji DP, Foka P (2002) CCAAT/enhancer binding proteins: structure, function and regulation. Biochem J 365:561–575

    PubMed  CAS  Google Scholar 

  69. Osada S, Yamamoto H, Nishihara T, Imagawa M (1996) DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family. J Biol Chem 271:3891–3896

    Article  PubMed  CAS  Google Scholar 

  70. Ubeda M, Habener JF (2003) CHOP transcription factor phosphorylation by casein kinase 2 inhibits transcriptional activation. J Biol Chem 278:40514–40520

    Article  PubMed  CAS  Google Scholar 

  71. Tipping PG, Holdsworth SR (2007) Cytokines in glomerulonephritis. Semin Nephrol 27:275–285

    PubMed  CAS  Google Scholar 

  72. Negulescu O, Bognar I, Lei J, Devarajan P, Silbiger S, Neugarten J (2002) Estradiol reverses TGF-beta1-induced mesangial cell apoptosis by a casein kinase 2-dependent mechanism. Kidney Int 62:1989–1998

    Article  PubMed  CAS  Google Scholar 

  73. Yamada M, Katsuma S, Adachi T, Hirasawa A, Shiojima S, Kadowaki T, Okuno Y, Koshimizu TA, Fujii S, Sekiya Y, Miyamoto Y, Tamura M, Yumura W, Nihei H, Kobayashi M, Tsujimoto G (2005) Inhibition of protein kinase CK2 prevents the progression of glomerulonephritis. Proc Natl Acad Sci U S A 102:7736–7741

    Article  PubMed  CAS  Google Scholar 

  74. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581

    Article  PubMed  CAS  Google Scholar 

  75. Harvey EJ, Ramji DP (2005) Interferon-γ and atherosclerosis: pro- or anti-atherogenic? Cardiovasc Res 67:11–20

    Article  PubMed  CAS  Google Scholar 

  76. Agrawal S, Febbraio M, Podrez E, Cathcart MK, Stark GR, Chisolm GM (2007) Signal transducer and activator of transcription 1 is required for optimal foam cell formation and atherosclerotic lesion development. Circulation 115:2939–2947

    Article  PubMed  CAS  Google Scholar 

  77. Bodor J, Bodorova J, Gress RE (2000) Suppression of T cell function: a potential role for the transcriptional repressor ICER. J Leukoc Biol 67:774–779

    PubMed  CAS  Google Scholar 

  78. Ohtsubo H, Ichiki T, Miyazaki R, Inanaga K, Imayama I, Hashiguchi Y, Sadoshima J, Sunagawa K (2007) Inducible cAMP early repressor inhibits growth of vascular smooth muscle cell. Arterioscler Thromb Vasc Biol 27:1549–1555

    Article  PubMed  CAS  Google Scholar 

  79. Roosbeek S, Peelman F, Verhee A, Labeur C, Caster H, Lensink MF, Cirulli C, Grooten J, Cochet C, Vandekerckhove J, Amoresano A, Chimini G, Tavernier J, Rosseneu M (2004) Phosphorylation by protein kinase CK2 modulates the activity of the ATP binding cassette A1 transporter. J Biol Chem 279:37779–37788

    Article  PubMed  CAS  Google Scholar 

  80. Lee KS, Park JH, Lee S, Lim HJ, Jang Y, Park HY (2006) Troglitazone inhibits endothelial cell proliferation through suppression of casein kinase 2 activity. Biochem Biophys Res Commun 346:83–88

    Article  PubMed  CAS  Google Scholar 

  81. Seldin DC, Leder P (1995) Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267:894–897

    Article  PubMed  CAS  Google Scholar 

  82. Kelliher MA, Seldin DC, Leder P (1996) Tal-1 induces T cell acute lymphoblastic leukaemia accelerated by casein kinase IIa. EMBO J 15:5160–5166

    PubMed  CAS  Google Scholar 

  83. Landesman-Bollag E, Song DH, Romieu-Mourez R, Sussman DJ, Cardiff RD, Sonenshein GE, Seldin DC (2001) Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol Cell Biochem 227:153–165

    Article  PubMed  CAS  Google Scholar 

  84. Faust RA, Tawfic S, Davis AT, Bubash LA, Ahmed K (2000) Antisense oligonucleotides against protein kinase CK2-alpha inhibit growth of squamous cell carcinoma of the head and neck in vitro. Head Neck 22:341–346

    Article  PubMed  CAS  Google Scholar 

  85. Rifkin IR, Channavajhala PL, Kiefer HL, Carmack AJ, Landesman-Bollag E, Beaudette BC, Jersky B, Salant DJ, Ju ST, Marshak-Rothstein A, Seldin DC (1998) Acceleration of lpr lymphoproliferative and autoimmune disease by transgenic protein kinase CK2 alpha. J Immunol 161:5164–5170

    PubMed  CAS  Google Scholar 

  86. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  87. Li Q, Withoff S, Verma IM (2005) Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol 26:318–325

    Article  PubMed  CAS  Google Scholar 

  88. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  PubMed  CAS  Google Scholar 

  89. de Visser KE, Coussens LM (2006) The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol 13:118–137

    Article  PubMed  Google Scholar 

  90. Li X, Shi X, Liang DY, Clark JD (2005) Spinal CK2 regulates nociceptive signaling in models of inflammatory pain. Pain 2005 115:182–190

    Article  CAS  Google Scholar 

  91. Axtell RC, Xu L, Barnum SR, Raman C (2006) CD5-CK2 binding/activation-deficient mice are resistant to experimental autoimmune encephalomyelitis: protection is associated with diminished populations of IL-17-expressing T cells in the central nervous system. J Immunol 177:8542–8549

    PubMed  CAS  Google Scholar 

  92. Wang G, Unger G, Ahmad KA, Slaton JW, Ahmed K (2005) Downregulation of CK2 induces apoptosis in cancer cells—a potential approach to cancer therapy. Mol Cell Biochem 274:77–84

    Article  PubMed  CAS  Google Scholar 

  93. Kramerov AA, Saghizadeh M, Pan H, Kabosova A, Montenarh M, Ahmed K, Penn JS, Chan CK, Hinton DR, Grant MB, Ljubimov AV (2006) Expression of protein kinase CK2 in astroglial cells of normal and neovascularized retina. Am J Pathol 168:1722–1736

    Article  PubMed  CAS  Google Scholar 

  94. Laudet B, Barette C, Dulery V, Renaudet O, Dumy P, Metz A, Prudent R, Deshiere A, Dideberg O, Filhol O, Cochet C (2007) Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochem J 408:363–373

    Article  PubMed  CAS  Google Scholar 

  95. Slaton JW, Unger GM, Sloper DT, Davis AT, Ahmed K (2004) Induction of apoptosis by antisense CK2 in human prostate cancer xenograft model. Mol Cancer Res 2:712–721

    PubMed  CAS  Google Scholar 

  96. Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anticancer Drugs 16:1037–1043

    Article  PubMed  CAS  Google Scholar 

  97. French AC, Luscher B, Litchfield DW (2007) Development of a stabilized form of the regulatory CK2beta subunit that inhibits cell proliferation. J Biol Chem 282:29667–29677

    Article  PubMed  CAS  Google Scholar 

  98. Perera Y, Farina HG, Hernández I, Mendoza O, Serrano JM, Reyes O, Gómez DE, Gómez RE, Acevedo BE, Alonso DF, Perea SE (2008) Systemic administration of a peptide that impairs the protein kinase (CK2) phosphorylation reduces solid tumor growth in mice. Int J Cancer 122:57–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the British Heart Foundation and the Wellcome Trust for financial support and apologize to all those authors whose work could not be cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak P. Ramji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N.N., Ramji, D.P. Protein kinase CK2, an important regulator of the inflammatory response?. J Mol Med 86, 887–897 (2008). https://doi.org/10.1007/s00109-008-0352-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0352-0

Keywords

Navigation