Skip to main content

Advertisement

Log in

Dasatinib: a potential tyrosine kinase inhibitor to fight against multiple cancer malignancies

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Dasatinib is the 2nd generation TKI (Tyrosine Kinase Inhibitor) having the potential to treat numerous forms of leukemic and cancer patients and it is 300 times more potent than imatinib. Cancer is the major cause of death globally and need to enumerate novel strategies to coping with it. Various novel therapeutics introduced into the market for ease in treating various forms of cancer. We reviewed and evaluated all the related aspects of dasatinib, which can enhance the knowledge about dasatinib therapeutics methodology, pharmacodynamic and pharmacokinetics, side effects, advantages, disadvantages, various kinds of interactions and its novel formulations as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data has been associated with this manuscirpt.

References

  1. McCormack PL, Keam SJ. Dasatinib: a review of its use in the treatment of chronic myeloid leukaemia and philadelphia chromosome-positive acute lymphoblastic leukaemia. Drugs. 2011;71:1771–95. https://doi.org/10.2165/11207580-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  2. Niza E, Del Mar Noblejas-López M, Bravo I, Nieto-Jiménez C, Castro-Osma JA, Canales-Vázquez J, Lara-Sanchez A, Galán Moya EM, Burgos M, Ocaña A, Alonso-Moreno C. Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of dasatinib in HER2+ metastasic breast Cancer. Nanomaterials. 2019. https://doi.org/10.3390/nano9121793.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ongoren S, Eskazan AE, Suzan V, Savci S, Erdogan Ozunal I, Berk S, Yalniz FF, Elverdi T, Salihoglu A, Erbilgin Y, Iseri SA, Ar MC, Baslar Z, Aydin Y, Tuzuner N, Ozbek U, Soysal T. Third-line treatment with second-generation tyrosine kinase inhibitors (dasatinib or nilotinib) in patients with chronic myeloid leukemia after two prior TKIs: real-life data on a single center experience along with the review of the literature. Hematology. 2018;23:212–20. https://doi.org/10.1080/10245332.2017.1385193.

    Article  CAS  PubMed  Google Scholar 

  4. Montemurro M, Cioffi A, Dômont J, Rutkowski P, Roth AD, von Moos R, Inauen R, Toulmonde M, Burkhard RO, Knuesli C, Bauer S, Cassier P, Schwarb H, Le Cesne A, Koeberle D, Bärtschi D, Dietrich D, Biaggi C, Prior J, Leyvraz S. Long-term outcome of dasatinib first-line treatment in gastrointestinal stromal tumor: a multicenter, 2-stage phase 2 trial (Swiss Group for Clinical Cancer Research 56/07). Cancer. 2018;124:1449–54. https://doi.org/10.1002/CNCR.31234.

    Article  CAS  PubMed  Google Scholar 

  5. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LAM, Das J, Doweyko AM, Fairchild C, Hunt JT, Inigo I, Johnston K, Kamath A, Kan D, Klei H, Marathe P, Pang S, Peterson R, Pitt S, Schieven GL, Schmidt RJ, Tokarski J, Wen ML, Wityak J, Borzilleri RM. Discovery of N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47:6658–61. https://doi.org/10.1021/JM049486A/SUPPL_FILE/JM049486ASI20041105_112036.PDF.

    Article  CAS  PubMed  Google Scholar 

  6. Blake SJ, Hughes TP, Lyons AB. Drug-interaction studies evaluating T-cell proliferation reveal distinct activity of dasatinib and imatinib in combination with cyclosporine A. Exp Hematol. 2012. https://doi.org/10.1016/J.EXPHEM.2012.04.003.

    Article  PubMed  Google Scholar 

  7. Naik R, Jaldappagari S. Spectral and computational attributes: binding of a potent anticancer agent, dasatinib to a transport protein. J Mol Liq. 2019. https://doi.org/10.1016/J.MOLLIQ.2019.111492.

    Article  Google Scholar 

  8. Mizuta S, Sawa M, Tsurumi H, Matsumoto K, Miyao K, Hara T, Takahashi T, Sakemura R, Kojima H, Kohno A, Oba MS, Morita S, Sakamoto J, Emi N. Plasma concentrations of dasatinib have a clinical impact on the frequency of dasatinib dose reduction and interruption in chronic myeloid leukemia: an analysis of the DARIA 01 study. Int J Clin Oncol. 2018;23:980–8. https://doi.org/10.1007/S10147-018-1300-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eustace AJ, Crown J, Clynes M, O’Donovan N. Preclinical evaluation of dasatinib, a potent Src kinase inhibitor, in melanoma cell lines. J Transl Med. 2008;6:1–11. https://doi.org/10.1186/1479-5876-6-53/FIGURES/5.

    Article  Google Scholar 

  10. Kang B, Kim Y, Park TJ, Kang HY. Dasatinib, a second-generation tyrosine kinase inhibitor, induces melanogenesis via ERK-CREB-MITF-tyrosinase signaling in normal human melanocytes. Biochem Biophys Res Commun. 2020;523:1034–9. https://doi.org/10.1016/J.BBRC.2020.01.051.

    Article  CAS  PubMed  Google Scholar 

  11. Naqvi K, Jabbour E, Skinner J, Anderson K, Dellasala S, Yilmaz M, Ferrajoli A, Bose P, Thompson P, Alvarado Y, Jain N, Takahashi K, Burger J, Estrov Z, Borthakur G, Pemmaraju N, Paul S, Cortes J, Kantarjian HM. Long-term follow-up of lower dose dasatinib (50 mg daily) as frontline therapy in newly diagnosed chronic-phase chronic myeloid leukemia. Cancer. 2020;126:67–75. https://doi.org/10.1002/CNCR.32504.

    Article  CAS  PubMed  Google Scholar 

  12. Wong SF. New dosing schedules of Dasatinib for CML and adverse event management. J Hematol Oncol. 2009;2:1–9. https://doi.org/10.1186/1756-8722-2-10/FIGURES/1.

    Article  Google Scholar 

  13. Vaidhyanathan S, Wang X, Crison J, Varia S, Gao JZH, Saxena A, Good D. Bioequivalence comparison of pediatric dasatinib formulations and elucidation of absorption mechanisms through integrated PBPK modeling. J Pharm Sci. 2019;108:741–9. https://doi.org/10.1016/J.XPHS.2018.11.005.

    Article  CAS  PubMed  Google Scholar 

  14. Salgado M, Martinez-Picado J, Gálvez C, Rodríguez-Mora S, Rivaya B, Urrea V, Mateos E, Alcamí J, Coiras M. Dasatinib protects humanized mice from acute HIV-1 infection. Biochem Pharmacol. 2020. https://doi.org/10.1016/J.BCP.2019.113625.

    Article  PubMed  Google Scholar 

  15. Korashy HM, Rahman AFMM, Kassem MG. Dasatinib. Profiles Drug Subst Excipients Relat Methodol. 2014;39:205–37. https://doi.org/10.1016/B978-0-12-800173-8.00004-0.

    Article  CAS  Google Scholar 

  16. Kumar SS, Gopalakrishnan G, Gowrishankar NL. Design optimization and in vitro characterization of dasatinib loaded PLGA nano carrier for targeted cancer therapy: a preliminary evaluation. Res J Pharm Technol. 2021. https://doi.org/10.52711/0974-360X.2021.00371.

    Article  Google Scholar 

  17. Beck O, Paret C, Russo A, Burhenne J, Fresnais M, Steimel K, Seidmann L, Wagner DC, Vewinger N, Lehmann N, Sprang M, Backes N, Roth L, Neu MA, Wingerter A, Henninger N, El Malki K, Otto H, Alt F, Desuki A, Kindler T, Faber J. Safety and activity of the combination of ceritinib and dasatinib in osteosarcoma. Cancers. 2020;12:793. https://doi.org/10.3390/CANCERS12040793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mezei G, Debreceni IB, Kerenyi A, Remenyi G, Szasz R, Illes A, Kappelmayer J, Batar P. Dasatinib inhibits coated-platelet generation in patients with chronic myeloid leukemia. Platelets. 2019;30:836–43. https://doi.org/10.1080/09537104.2018.1501470.

    Article  CAS  PubMed  Google Scholar 

  19. Levêque D, Becker G, Bilger K, Natarajan-Amé S. Clinical Pharmacokinetics and Pharmacodynamics of Dasatinib. Clin Pharmacokinet. 2020;59:849–56. https://doi.org/10.1007/S40262-020-00872-4.

    Article  PubMed  Google Scholar 

  20. Chen B, Wu Z, Wang Q, Li W, Cheng D. Dasatinib-induced chylothorax: report of a case and review of the literature. Investig New Drugs. 2020;38:1627–32. https://doi.org/10.1007/S10637-020-00932-3.

    Article  Google Scholar 

  21. Araujo J, Logothetis C. Dasatinib: A potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev. 2010;36:492–500. https://doi.org/10.1016/J.CTRV.2010.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qin QP, Meng T, Tan MX, Liu YC, Luo XJ, Zou BQ, Liang H. Synthesis, crystal structure and biological evaluation of a new dasatinib copper(II) complex as telomerase inhibitor. Eur J Med Chem. 2018;143:1597–603. https://doi.org/10.1016/J.EJMECH.2017.10.058.

    Article  CAS  PubMed  Google Scholar 

  23. Scuoppo C, Wang J, Persaud M, Mittan SK, Basso K, Pasqualucci L, Rabadan R, Inghirami G, Grandori C, Bosch F, Dalla-Favera R. Repurposing dasatinib for diffuse large B cell lymphoma. Proc Natl Acad Sci U S A. 2019;116:16981–6. https://doi.org/10.1073/PNAS.1905239116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohan A, Sangeetha G. Formulation and evaluation of immediate release film coated tablets of an anticancer drug (dasatinib). Res J Pharm Technol. 2019;12:729–34. https://doi.org/10.5958/0974-360X.2019.00129.X.

    Article  Google Scholar 

  25. Gencer EB, Ural AU, Avcu F, Baran Y. A novel mechanism of dasatinib-induced apoptosis in chronic myeloid leukemia; ceramide synthase and ceramide clearance genes. Ann Hematol. 2011;90:1265–75. https://doi.org/10.1007/S00277-011-1212-5.

    Article  CAS  PubMed  Google Scholar 

  26. Ishida Y, Murai K, Yamaguchi K, Miyagishima T, Shindo M, Ogawa K, Nagashima T, Sato S, Watanabe R, Yamamoto S, Hirose T, Saitou S, Yonezumi M, Kondo T, Kato Y, Mochizuki N, Ohno K, Kishino S, Kubo K, Oyake T, Ito S. Pharmacokinetics and pharmacodynamics of dasatinib in the chronic phase of newly diagnosed chronic myeloid leukemia. Eur J Clin Pharmacol. 2016;72:185–93. https://doi.org/10.1007/S00228-015-1968-Y/TABLES/5.

    Article  CAS  PubMed  Google Scholar 

  27. Hořínková J, Šíma M, Slanař O. Pharmacokinetics of dasatinib. Prague Med Rep. 2019;120:52–63. https://doi.org/10.14712/23362936.2019.10.

    Article  PubMed  Google Scholar 

  28. He S, Bian J, Shao Q, Zhang Y, Hao X, Luo X, Feng Y, Huang L. Therapeutic drug monitoring and individualized medicine of dasatinib: focus on clinical pharmacokinetics and pharmacodynamics. Front Pharmacol. 2021. https://doi.org/10.3389/FPHAR.2021.797881.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mori J, Oshima K, Tanimoto T, Ishizuka H, Kimura S, Miura M, Takahashi N. Pharmacokinetics of dasatinib in a hemodialysis patient with chronic myeloid leukemia and chronic kidney disease. Int J Hematol. 2020;112:115–7. https://doi.org/10.1007/S12185-020-02846-5.

    Article  PubMed  Google Scholar 

  30. Chang M, Bathena S, Christopher LJ, Shen H, Roy A. Prediction of drug–drug interaction potential mediated by transporters between dasatinib and metformin, pravastatin, and rosuvastatin using physiologically based pharmacokinetic modeling. Cancer Chemother Pharmacol. 2022;89:383–92. https://doi.org/10.1007/s00280-021-04394-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carthikeyan SM, Jayachandran PK. Dasatinib—A generation ahead. Indian J Med Paediatr Oncol. 2021;42:172–6. https://doi.org/10.1055/s-0041-1732822.

    Article  Google Scholar 

  32. Deng J, Shao J, Markowitz JS, An G. ABC transporters in multi-drug resistance and ADME-Tox of small molecule tyrosine kinase inhibitors. Pharm Res. 2014;31:2237–55. https://doi.org/10.1007/S11095-014-1389-0/TABLES/1.

    Article  CAS  PubMed  Google Scholar 

  33. Fleisher B, Unum J, Shao J, An G. Ingredients in fruit juices interact with dasatinib through inhibition of BCRP: A new mechanism of beverage-drug interaction. J Pharm Sci. 2015;104:266–75. https://doi.org/10.1002/JPS.24289.

    Article  CAS  PubMed  Google Scholar 

  34. Collado-Borrell R, Escudero-Vilaplana V, Romero-Jiménez R, Iglesias-Peinado I, Herranz-Alonso A, Sanjurjo-Sáez M. Oral antineoplastic agent interactions with medicinal plants and food: an issue to take into account. J Cancer Res Clin Oncol. 2016;142:2319–30. https://doi.org/10.1007/S00432-016-2190-8/TABLES/4.

    Article  CAS  PubMed  Google Scholar 

  35. Kamath AV, Wang J, Lee FY, Marathe PH. Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother Pharmacol. 2008;61:365–76. https://doi.org/10.1007/s00280-007-0478-8.

    Article  CAS  PubMed  Google Scholar 

  36. Nekoukar Z, Moghimi M, Salehifar E. A narrative review on adverse effects of dasatinib with a focus on pharmacotherapy of dasatinib-induced pulmonary toxicities. Blood Res. 2021;56:229–42. https://doi.org/10.5045/BR.2021.2021117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Z, Parveen N, Rehman U, Aziz A, Sheikh A, Abourehab MAS, Guo W, Huang J, Wang Z, Kesharwani P. Unravelling the enigma of siRNA and aptamer mediated therapies against pancreatic cancer. Mol Cancer. 2023;22:1–22. https://doi.org/10.1186/S12943-022-01696-5.

    Article  Google Scholar 

  38. Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, Li J, Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer. 2023;22:1–50. https://doi.org/10.1186/S12943-022-01708-4.

    Article  Google Scholar 

  39. Parveen N, Sheikh A, Abourehab MAS, Karwasra R, Singh S, Kesharwani P. Self-nanoemulsifying drug delivery system for pancreatic cancer. Eur Polym J. 2023;190:111993. https://doi.org/10.1016/J.EURPOLYMJ.2023.111993.

    Article  CAS  Google Scholar 

  40. Dongsar TT, Dongsar TS, Abourehab MAS, Gupta N, Kesharwani P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur Polym J. 2023;187:111898. https://doi.org/10.1016/J.EURPOLYMJ.2023.111898.

    Article  CAS  Google Scholar 

  41. Kesharwani P, Sheikh A, Abourehab MAS, Salve R, Gajbhiye V. A combinatorial delivery of survivin targeted siRNA using cancer selective nanoparticles for triple negative breast cancer therapy. J Drug Deliv Sci Technol. 2023;80:104164. https://doi.org/10.1016/J.JDDST.2023.104164.

    Article  CAS  Google Scholar 

  42. Fatima M, Sheikh A, Abourehab MAS, Kesharwani P, Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric nanocarriers to mediate targeted therapy against triple-negative breast cancer. Pharmaceutics. 2022;14:2432. https://doi.org/10.3390/PHARMACEUTICS14112432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arora V, Abourehab MAS, Modi G, Kesharwani P. Dendrimers as prospective nanocarrier for targeted delivery against lung cancer. Eur Polym J. 2022;180:111635. https://doi.org/10.1016/J.EURPOLYMJ.2022.111635.

    Article  CAS  Google Scholar 

  44. Munija P, Srikanth G. Formulation and evaluation of sumatriptan immediate release tablets. J Drug Deliv Ther. 2018;8:241–7. https://doi.org/10.22270/jddt.v8i5.1904.

    Article  CAS  Google Scholar 

  45. Sundari DPT. Formulation and evaluation of fluvastatin loaded solid lipid nanoparticles. Int J Pharm Sci Rev Res. 2021. https://doi.org/10.47583/ijpsrr.2021.v69i01.006.

    Article  Google Scholar 

  46. Wang C, Wang M, Chen P, Wang J, Le Y. Dasatinib nanoemulsion and nanocrystal for enhanced oral drug delivery. Pharmaceutics. 2022;14:197. https://doi.org/10.3390/PHARMACEUTICS14010197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parvataneni DM, Devraj R, Mangamoori LN. Micelles entrapped microparticles technology: a novel approach to resolve dissolution and bioavailability problems of poorly water soluble drugs. J Microencapsul. 2020;37:254–69. https://doi.org/10.1080/02652048.2020.1729883.

    Article  CAS  PubMed  Google Scholar 

  48. Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts. 2018;8:305. https://doi.org/10.15171/BI.2018.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36:43–8. https://doi.org/10.1177/0192623307310946.

    Article  CAS  PubMed  Google Scholar 

  50. Shah N, Roy A, Wang X, Kantarjian H, Chen T. Differential effects of dosing regimen on the safety and efficacy of dasatinib: retrospective exposure–response analysis of a Phase III study. Clin Pharmacol Adv Appl. 2013. https://doi.org/10.2147/CPAA.S42796.

    Article  Google Scholar 

  51. Mittapalli RK, Chung AH, Parrish KE, Crabtree D, Halvorson KG, Hu G, Elmquist WF, Becher OJ. ABCG2 and ABCB1 limit the efficacy of dasatinib in a PDGF-B–driven brainstem glioma model. Mol Cancer Ther. 2016;15:819–29. https://doi.org/10.1158/1535-7163.MCT-15-0093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garcia-Gomez A, Ocio EM, Crusoe E, Santamaria C, Herná ndezCampo P, Blanco JF, Sanchez-Guijo FM, Herná ndez-Iglesias T, Briñ JG, Fisac-Herrero RM, Lee FY, Pandiella A, San Miguel JF, Garayoa M. Dasatinib as a bone-modifying agent: anabolic and anti. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0034914.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Porkka K, Koskenvesa P, Lundán T, Rimpiläinen J, Mustjoki S, Smykla R, Wild R, Luo R, Arnan M, Brethon B, Eccersley L, Hjorth-Hansen H, Höglund M, Klamova H, Knutsen H, Parikh S, Raffoux E, Gruber F, Brito-Babapulle F, Dombret H, Duarte RF, Elonen E, Paquette R, Zwaan CM, Lee FYF. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome–positive leukemia. Blood. 2008;112:1005–12. https://doi.org/10.1182/blood-2008-02-140665.

    Article  CAS  PubMed  Google Scholar 

  54. Izumi-Nakaseko H, Fujiyoshi M, Hagiwara-Nagasawa M, Goto A, Chiba K, Kambayashi R, Naito AT, Ando K, Kanda Y, Ishii I, Sugiyama A. Dasatinib can impair left ventricular mechanical function but may lack proarrhythmic effect: a proposal of non-clinical guidance for predicting clinical cardiovascular adverse events of tyrosine kinase inhibitors. Cardiovasc Toxicol. 2020;20:58–70. https://doi.org/10.1007/S12012-019-09538-5.

    Article  CAS  PubMed  Google Scholar 

  55. Morris PG, Rota S, Cadoo K, Zamora S, Patil S, D’Andrea G, Gilewski T, Bromberg J, Dang C, Dickler M, Modi S, Seidman AD, Sklarin N, Norton L, Hudis CA, Fornier MN. Phase II study of paclitaxel and dasatinib in metastatic breast cancer. Clin Breast Cancer. 2018;18:387–94. https://doi.org/10.1016/j.clbc.2018.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heilmann T, Rumpf AL, Roscher M, Tietgen M, Will O, Gerle M, Damm T, Borzikowsky C, Maass N, Glüer CC, Tiwari S, Trauzold A, Schem C. Dasatinib prevents skeletal metastasis of osteotropic MDA-MB-231 cells in a xenograft mouse model. Arch Gynecol Obstet. 2020;301:1493–502. https://doi.org/10.1007/S00404-020-05496-4.

    Article  CAS  PubMed  Google Scholar 

  57. Mantuano P, Boccanegra B, Conte E, De Bellis M, Cirmi S, Sanarica F, Cappellari O, Arduino I, Cutrignelli A, Lopedota AA, Mele A, Denora N, De Luca A. β-Dystroglycan restoration and pathology progression in the dystrophic mdx mouse: outcome and implication of a clinically oriented study with a novel oral dasatinib formulation. Biomolecules. 2021;11:1742. https://doi.org/10.3390/biom11111742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duska LR, Petroni GR, Lothamer H, Faust W, Beumer JH, Christner SM, Mills AM, Fracasso PM, Parsons SJ. A window-of-opportunity clinical trial of dasatinib in women with newly diagnosed endometrial cancer. Cancer Chemother Pharmacol. 2019;83:473–82. https://doi.org/10.1007/S00280-018-3749-7.

    Article  CAS  PubMed  Google Scholar 

  59. Korashy HM, Rahman AFMM, Kassem MG. Dasatinib. Profiles Drug Subst Excip Relat Methodol. 2014. https://doi.org/10.1016/B978-0-12-800173-8.00004-0.

    Article  PubMed  Google Scholar 

  60. Alharbi B, Alamri S, Mahdi A, Marghalani S. Dasatinib-induced hypopigmentation in pediatric patient with chronic myeloid leukemia: a case report and review of the literature. Case Rep Dermatol Med. 2018;2018:1–4. https://doi.org/10.1155/2018/4062431.

    Article  Google Scholar 

  61. Khurana H, Jha V, Handa A, Mahapatra D. A rare case of late presentation of dasatinib-induced cardiopulmonary toxicity. Indian J Respir Care. 2021;10:152. https://doi.org/10.4103/ijrc.ijrc_65_20.

    Article  Google Scholar 

  62. Maat Z, Mushtaq K, Yassin MA. Dasatinib-induced colitis with rectal sparing in a patient with chronic myeloid leukemia (chronic phase) on dasatinib as an upfront therapy: case report, case rep. Oncol. 2021;14:1441–6. https://doi.org/10.1159/000516794.

    Article  Google Scholar 

  63. Yang L, Xu J, Xie Z, Song F, Wang X, Tang R. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian J Pharm Sci. 2021;16:762–71. https://doi.org/10.1016/j.ajps.2021.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ghosn Y, Kamareddine MH, Tawk A, Elia C, El Mahmoud A, Terro K, El Harake N, El-Baba B, Makdessi J, Farhat S. Inorganic nanoparticles as drug delivery systems and their potential role in the treatment of chronic myelogenous leukaemia. Technol Cancer Res Treat. 2019;18:1–12. https://doi.org/10.1177/1533033819853241.

    Article  CAS  Google Scholar 

  65. Russo E, Spallarossa A, Tasso B, Villa C, Brullo C. Nanotechnology of tyrosine kinase inhibitors in cancer therapy: a perspective. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22126538.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bahman F, Pittalà V, Haider M, Greish K. Enhanced anticancer activity of nanoformulation of Dasatinib against triple-negative breast cancer. J Pers Med. 2021;11:559.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects 10 technology 1007 nanotechnology 03 chemical sciences 0306 physical chemistry (incl. structural) 03 chemical sciences 0303 macromolecular and materials chemistry 11 medical and He. J Nanobiotechnol. 2018;16:1–33. https://doi.org/10.1186/s12951-018-0392-8.

    Article  CAS  Google Scholar 

  68. Hasan N, Imran M, Kesharwani P, Khanna K, Karwasra R, Sharma N, Rawat S, Sharma D, Ahmad FJ, Jain GK, Bhatnagar A, Talegaonkar S. Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose. Int J Pharm. 2021. https://doi.org/10.1016/j.ijpharm.2021.120428.

    Article  PubMed  Google Scholar 

  69. Arafath AAMY, Jaykar B. Determining the enhancement of oral bioavailability VIA solid lipid nanoparticles of anticancer drug dasatinib—an in-vitro cytotoxicity and pharmacokinetic study. In: Current aspects in pharmaceutical research and development, vol. 2. London: Book Publisher International (a part of SCIENCEDOMAIN International); 2021. p. 161–8. https://doi.org/10.9734/bpi/caprd/v2/4309f.

    Chapter  Google Scholar 

  70. Hasan N, Imran M, Jain D, Shamim A, Beg S, Kesharwani P, Jain G, Ahmad FJ. Rapid analytical method development and validation for the simultaneous estimation of 5-fluorouracil and cannabidiol in plasma and lipid-based nanoformulations. Curr Anal Chem. 2022. https://doi.org/10.2174/1573411018666220304085236.

    Article  Google Scholar 

  71. Hasan N, Imran M, Nadeem M, Jain D, Haider K, Moshahid Alam Rizvi M, Sheikh A, Kesharwani P, Kumar Jain G, Jalees Ahmad F. Formulation and development of novel lipid-based combinatorial advanced nanoformulation for effective treatment of non-melanoma skin cancer. Int J Pharm. 2023. https://doi.org/10.1016/J.IJPHARM.2022.122580.

    Article  PubMed  Google Scholar 

  72. Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007. https://doi.org/10.1016/j.addr.2007.04.012.

    Article  PubMed  Google Scholar 

  73. Li Q, Yang X, Zhang P, Mo F, Si P, Kang X, Wang M, Zhang J. Dasatinib loaded nanostructured lipid carriers for effective treatment of corneal neovascularization. Biomater Sci. 2021;9:2571–83. https://doi.org/10.1039/D0BM01599G.

    Article  CAS  PubMed  Google Scholar 

  74. Giner-Casares JJ, Henriksen-Lacey M, García I, Liz-Marzán LM. Plasmonic surfaces for cell growth and retrieval triggered by near-infrared light. Angew Chemie Int Ed. 2016;55:974–8. https://doi.org/10.1002/ANIE.201509025.

    Article  CAS  Google Scholar 

  75. Danish SM, Gupta A, Khan UA, Hasan N, Ahmad FJ, Warsi MH, Ali AMA, Zafar A, Jain GK. Intranasal cerium oxide nanoparticles ameliorate cognitive function in rats with alzheimer’s via anti-oxidative pathway. Pharm. 2022. https://doi.org/10.3390/PHARMACEUTICS14040756.

    Article  Google Scholar 

  76. Kawish SM, Hasan N, Beg S, Qadir A, Jain GK, Aqil M, Ahmad FJ. Docetaxel-loaded borage seed oil nanoemulsion with improved antitumor activity for solid tumor treatment: Formulation development, in vitro, in silico and in vivo evaluation. J Drug Deliv Sci Technol. 2022;75:103693. https://doi.org/10.1016/J.JDDST.2022.103693.

    Article  CAS  Google Scholar 

  77. Nikhat A, Hasan N, Iqbal Z, Kesharwani P, Talegaonkar S. Enhanced transdermal delivery of lutein via nanoethosomal gel: Formulation optimization in-vitro evaluation and in-vivo assessment. J Drug Deliv Sci Technol. 2022. https://doi.org/10.1016/J.JDDST.2022.103447.

    Article  Google Scholar 

  78. Vadia N, Rajput S. Statistically designed formulation development of mesoporous nanoparticulate drug delivery system of dasatinib for improved dissolution and drug stability. Springer Proc Phys. 2019;236:269–86. https://doi.org/10.1007/978-981-15-0202-6_20.

    Article  CAS  Google Scholar 

  79. Moore TL, Grimes SW, Lewis RL, Alexis F. Multilayered polymer-coated carbon nanotubes to deliver dasatinib. Mol Pharm. 2014;11:276–82. https://doi.org/10.1021/MP400448W.

    Article  CAS  PubMed  Google Scholar 

  80. Sabra SA, Sheweita SA, Haroun M, Ragab D, Eldemellawy MA, Xia Y, Goodale D, Allan AL, Elzoghby AO, Rohani S. Magnetically guided self-assembled protein micelles for enhanced delivery of dasatinib to human triple-negative breast cancer cells. J Pharm Sci. 2019;108:1713–25. https://doi.org/10.1016/j.xphs.2018.11.044.

    Article  CAS  PubMed  Google Scholar 

  81. Zielinska A, Carreiró F, Oliveira AM, Neves A, Pires B, Nagasamy Venkatesh D, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25:3731. https://doi.org/10.3390/molecules25163731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nadaf A, Gupta A, Hasan N, Ahmad S, Ahmad FJ. Recent update on electrospinning and electrospun nanofibers: current trends and their applications. RSC Adv. 2022;12:23808–28. https://doi.org/10.1039/D2RA02864F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Karwasra R, Ahmad S, Raza K, Khanna K, Singh S, Sharma N, Sharma S, Hasan N, Kaushik D, Varma S. Engineering macrophage targeted punicalagin nanoparticles by computational modeling to alleviate methotrexate induced neutropenia. Research Square, Preperint (Version 1). 2022. https://doi.org/10.21203/RS.3.RS-1441489/V1.

  84. Yao Q, Choi JH, Dai Z, Wang J, Kim D, Tang X, Zhu L. Improving tumor specificity and anticancer activity of dasatinib by dual-targeted polymeric micelles. ACS Appl Mater Interfaces. 2017;9:36642–54. https://doi.org/10.1021/ACSAMI.7B12233.

    Article  CAS  PubMed  Google Scholar 

  85. Hasan N, Imran M, Sheikh A, Saad S, Chaudhary G, Jain GK, Kesharwani P, Ahmad FJ. Cannabis as a potential compound against various malignancies, legal aspects, advancement by exploiting nanotechnology and clinical trials. J Drug Target. 2022. https://doi.org/10.1080/1061186X.2022.2056188.

    Article  PubMed  Google Scholar 

  86. Imran M, Jha LA, Hasan N, Shrestha J, Pangeni R, Parvez N, Mohammed Y, Jha SK, Paudel KR. Nanodecoys—Future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm. 2022;621:121790. https://doi.org/10.1016/J.IJPHARM.2022.121790.

    Article  CAS  PubMed  Google Scholar 

  87. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193. https://doi.org/10.3389/FMOLB.2020.00193/BIBTEX.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang X, Zang X, Qiao M, Zhao X, Hu H, Chen D. Targeted delivery of dasatinib to deplete tumor-associated macrophages by mannosylated mixed micelles for tumor immunotherapy. ACS Biomater Sci Eng. 2020;6:5675–84. https://doi.org/10.1021/ACSBIOMATERIALS.0C01046.

    Article  CAS  PubMed  Google Scholar 

  89. Allotey-Babington GL, Nettey H, D’Souza MJ. Docetaxel-dasatinib combination: a strategy to overcome unfavorable treatment outcomes due to dose reduction. J Drug Deliv Sci Technol. 2021;61:102085. https://doi.org/10.1016/j.jddst.2020.102085.

    Article  CAS  Google Scholar 

  90. Reddy Adena SK, Matte KV, Kosuru R. Formulation optimization and in vitro characterization of dasatinib loaded polymeric nanocarriers to extend the release of the model drug. Int J Appl Pharm. 2021. https://doi.org/10.22159/ijap.2021v13i5.41995.

    Article  Google Scholar 

  91. Gao J, Qiao Z, Liu S, Xu J, Wang S, Yang X, Wang X, Tang R. A small molecule nanodrug consisting of pH-sensitive ortho ester–dasatinib conjugate for cancer therapy. Eur J Pharm Biopharm. 2021;163:188–97. https://doi.org/10.1016/j.ejpb.2021.04.008.

    Article  CAS  PubMed  Google Scholar 

  92. Keating GM, Lyseng-Williamson KA, McCormack PL, Keam SJ. Dasatinib: a guide to its use in chronic myeloid leukemia in the EU. BioDrugs. 2013;27:275–9. https://doi.org/10.1007/s40259-013-0024-7.

    Article  CAS  PubMed  Google Scholar 

  93. Bahman F, Pittalà V, Haider M, Greish K. Enhanced anticancer activity of nanoformulation of dasatinib against triple-negative breast cancer. J Pers Med. 2021. https://doi.org/10.3390/JPM11060559.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tian J, Al Raffa F, Dai M, Moamer A, Khadang B, Hachim IY, Bakdounes K, Ali S, Jean-Claude B, Lebrun JJ. Dasatinib sensitises triple negative breast cancer cells to chemotherapy by targeting breast cancer stem cells. Br J Cancer. 2018. https://doi.org/10.1038/s41416-018-0287-3.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Breccia M, Alimena G. Pleural/pericardic effusions during dasatinib treatment: incidence, management and risk factors associated to their development. Expert Opin Drug Saf. 2010;9:713–21. https://doi.org/10.1517/14740331003742935.

    Article  CAS  PubMed  Google Scholar 

  96. Naqvi K, Jabbour E, Skinner J, Yilmaz M, Ferrajoli A, Bose P, Thompson P, Alvarado Y, Jain N, Takahashi K, Burger J, Estrov Z, Borthakur G, Pemmaraju N, Paul S, Cortes J, Kantarjian HM. Early results of lower dose dasatinib (50 mg daily) as frontline therapy for newly diagnosed chronic-phase chronic myeloid leukemia. Cancer. 2018;124:2740–7. https://doi.org/10.1002/CNCR.31357.

    Article  CAS  PubMed  Google Scholar 

  97. Sun J, Wang X, Tang B, Liu H, Zhang M, Wang Y, Ping F, Ding J, Shen A, Geng M. A tightly controlled Src-YAP signaling axis determines therapeutic response to dasatinib in renal cell carcinoma. Theranostics. 2018;8:3256–67. https://doi.org/10.7150/thno.23964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. El Sayed I, Helmy MW, El-Abhar HS. Inhibition of SRC/FAK cue: A novel pathway for the synergistic effect of rosuvastatin on the anti-cancer effect of dasatinib in hepatocellular carcinoma. Life Sci. 2018;213:248–57. https://doi.org/10.1016/j.lfs.2018.10.002.

    Article  CAS  PubMed  Google Scholar 

  99. Koreckij T, Nguyen H, Brown LG, Yu EY, Vessella RL, Corey E. Dasatinib inhibits the growth of prostate cancer in bone and provides additional protection from osteolysis. Br J Cancer. 2009;101:263–8. https://doi.org/10.1038/sj.bjc.6605178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cavalcante MB, Saccon TD, Nunes ADC, Kirkland JL, Tchkonia T, Schneider A, Masternak MM. Dasatinib plus quercetin on uterine age-related dysfunction and fibrosis in mice. BiorxivOrg. 2019. https://doi.org/10.1101/823229.

    Article  Google Scholar 

  101. Montenegro RC, Howarth A, Ceroni A, Fedele V, Farran B, Mesquita FP, Frejno M, Berger B-T, Heinzlmeir S, Sailem HZ, Tesch R, Ebner D, Knapp S, Burbano R, Kuster B, Müller S. Identification of molecular targets for the targeted treatment of gastric cancer using dasatinib. Oncotarget. 2020;11:535–49. https://doi.org/10.18632/oncotarget.27462.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288:518–36. https://doi.org/10.1111/joim.13141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barkoulas T, Hall PD. Experience with dasatinib and nilotinib use in pregnancy. J Oncol Pharm Pract. 2018;24:121–8. https://doi.org/10.1177/1078155217692399.

    Article  CAS  PubMed  Google Scholar 

  104. Bitencourt R, Zalcberg I, Louro ID. Imatinib resistance: A review of alternative inhibitors in chronic myeloid leukemia. Rev Bras Hematol Hemoter. 2011;33:470–5. https://doi.org/10.5581/1516-8484.20110124.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Jain N, O’Brien S. The frontline treatment of chronic myeloid leukemia in the chronic phase: current clinical decisions and future prospects for treatment. Expert Rev Hematol. 2013;6:575–86. https://doi.org/10.1586/17474086.2013.835697.

    Article  CAS  PubMed  Google Scholar 

  106. Wang Y, Xue J, Su Z, Cui Y, Liu G, Yang W, Liu Z, Chen J, Ren Q, Yu S, Cheng Y, Zhou Y, Wang W, Chen X, Qu D, Deng Q, Zhao Y, Yang H. Pharmacokinetics and safety of dasatinib and its generic: a phase I bioequivalence study in healthy Chinese subjects. Expert Opin Investig Drugs. 2023. https://doi.org/10.1080/13543784.2023.2179481.

    Article  PubMed  Google Scholar 

  107. Nakaya A, Fujita S, Satake A, Nakanishi T, Azuma Y, Tsubokura Y, Hotta M, Yoshimura H, Ishii K, Ito T, Nomura S. Clinical significance of dasatinib-induced pleural effusion in patients with de novo chronic myeloid leukemia. Hematol Rep. 2018;10:65–8. https://doi.org/10.4081/HR.2018.7474.

    Article  CAS  Google Scholar 

  108. Chong LY, Head K, Hopkins C, Philpott C, Burton MJ, Schilder AGM. Different types of intranasal steroids for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016. https://doi.org/10.1002/14651858.CD011993.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  109. McPhail M, Weiss E, Bubela T. Conditional drug approval as a path to market for oncology drugs in Canada: challenges and recommendations for assessing eligibility and regulatory responsiveness. Front Med. 2022. https://doi.org/10.3389/fmed.2021.818647.

    Article  Google Scholar 

  110. Yu G, Zheng QS, Wang DX, Zhou HH, Li GF. Drug interactions between tyrosine-kinase inhibitors and acid suppressive agents: More than meets the eye. Lancet Oncol. 2014;15:e469–70. https://doi.org/10.1016/S1470-2045(14)70458-9.

    Article  PubMed  Google Scholar 

  111. Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA. Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011;117:e75–87. https://doi.org/10.1182/BLOOD-2010-07-294330.

    Article  CAS  PubMed  Google Scholar 

  112. Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J, Mladěnka A, Karlíčková J, Jahodář L, Vopršalová M, Varner KJ, Štěrba M. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev. 2018;38:1332–403. https://doi.org/10.1002/med.21476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lindauer M, Hochhaus A. Dasatinib. Recent Results Cancer Res. 2014;201:27–65. https://doi.org/10.1007/978-3-642-54490-3_2.

    Article  CAS  PubMed  Google Scholar 

  114. Zheng P, Sun S, Wang J, Cheng ZJ, Lei KC, Xue M, Zhang T, Huang H, Zhang XD, Sun B. Integrative omics analysis identifies biomarkers of idiopathic pulmonary fibrosis. Cell Mol Life Sci. 2022;79:66. https://doi.org/10.1007/s00018-021-04094-0.

    Article  CAS  PubMed  Google Scholar 

  115. Deryabin PI, Shatrova AN, Borodkina AV. Apoptosis resistance of senescent cells is an intrinsic barrier for senolysis induced by cardiac glycosides. Cell Mol Life Sci. 2021;78:7757–76. https://doi.org/10.1007/S00018-021-03980-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Carcelero E, Anglada H, Tuset M, Creus N. Interactions between oral antineoplastic agents and concomitant medication: a systematic review. Expert Opin Drug Saf. 2013;12:403–20. https://doi.org/10.1517/14740338.2013.784268.

    Article  CAS  PubMed  Google Scholar 

  117. Martinez-Outschoorn UE, Lin Z, Ko YH, Goldberg AF, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle. 2011;10:2521–8. https://doi.org/10.4161/CC.10.15.16584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Keskin D, Sadri S, Eskazan AE. Dasatinib for the treatment of chronic myeloid leukemia: patient selection and special considerations. Drug Des Devel Ther. 2016;10:3355–61. https://doi.org/10.2147/DDDT.S85050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nautiyal J, Majumder P, Patel BB, Lee FY, Majumdar APN. Src inhibitor dasatinib inhibits growth of breast cancer cells by modulating EGFR signaling. Cancer Lett. 2009;283:143–51. https://doi.org/10.1016/j.canlet.2009.03.035.

    Article  CAS  PubMed  Google Scholar 

  120. Nyagwange J, Awino E, Tijhaar E, Svitek N, Pelle R, Nene V. Leveraging the medicines for malaria venture malaria and pathogen boxes to discover chemical inhibitors of East Coast fever. Int J Parasitol Drugs Drug Resist. 2019;9:80–6. https://doi.org/10.1016/j.ijpddr.2019.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University Grants Commission (UGC) for providing financial assistance under the special assistance Programme-II (SAP-II) to the department of pharmaceutics, SPER, Jamia Hamdard. The author (P. Kesharwani) acknowledges the financial support from the Indian Council of Medical Research (ICMR), New Delhi, India, through Extramural Research Grants.

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prashant Kesharwani or Farhan J. Ahmad.

Ethics declarations

Conflict of interest

None

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fauziya, Gupta, A., Nadaf, A. et al. Dasatinib: a potential tyrosine kinase inhibitor to fight against multiple cancer malignancies. Med Oncol 40, 173 (2023). https://doi.org/10.1007/s12032-023-02018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02018-5

Keywords

Navigation