Skip to main content

Imatinib: Basic Results

  • Chapter
  • First Online:
Chemotherapy for Leukemia

Abstract

Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder characterized by the reciprocal translocation t(9;22), which leads to the production of the Philadelphia (Ph) chromosome, encoding BCR-ABL tyrosine kinase. BCR-ABL is constitutively activated and induces malignant transformation of primitive hematopoietic cells. Imatinib mesylate (also known as STI571, GLEEVEC, or GLIVEC) is a 2-phenylaminopyrimidine derivative that received FDA approval as the first mechanism-based targeted small-molecule protein kinase inhibitor in 2001. Imatinib acts as an ATP-competitive inhibitor via interaction with the ABL kinase domain that results in the formation of six hydrogen bonds and through direct inhibition of BCR-ABL kinase activity. It inhibits BCR-ABL’s ability to transfer phosphate groups to tyrosine residues on the substrate, which blocks the subsequent activation of the proliferative signals. Although imatinib is an effective frontline therapy that has provided a remarkable success in the treatment of CML, the resistance to the inhibitor is still an obstacle. Quiescent leukemic stem cells are unresponsive to imatinib. BCR-ABL-dependent and BCR-ABL-independent mechanisms of drug resistance have been reported. To overcome imatinib resistance, the pharmacological targeting of key pathways alone or in combination with tyrosine kinase inhibitor (TKI) is being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piller G. Historical review LEUKAEMIA – a brief historical review from ancient times to 1950. Br J Haematol. 2001;112:282–92.

    Google Scholar 

  2. Nowell P, Hungerford D. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497.

    Google Scholar 

  3. Fialkow PJ, Gartler SM, Yoshida A. Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci U S A. 1967;58(4):1468–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature. 1973;243(5405):290–3. doi:10.1038/243290a0.

    Article  CAS  PubMed  Google Scholar 

  5. Abelson HT, Rabstein LS. Lymphosarcoma: virus-induced thymic-independent disease in mice. Cancer Res. 1970;30:2213–22.

    CAS  PubMed  Google Scholar 

  6. Bartram CR, de Klein A, Hagemeijer A, van Agthoven T, Geurts van Kessel A, Bootsma D, et al. Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1983;306:277–80.

    Article  CAS  PubMed  Google Scholar 

  7. Canaani E, Gale RP, Steiner-Saltz D, Berrebi A, Aghai E, Januszewicz E. Altered transcription of an oncogene in chronic myeloid leukaemia. Lancet. 1984;1:593–5.

    Article  CAS  PubMed  Google Scholar 

  8. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36(1):93–9. doi:10.1016/0092-8674(84)90077-1.

    Article  CAS  PubMed  Google Scholar 

  9. Lugo TG, Pendergast A-M, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247:1079–82.

    Article  CAS  PubMed  Google Scholar 

  10. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247:824–30.

    Article  CAS  PubMed  Google Scholar 

  11. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature. 1990;344(6263):251–3.

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB. Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives. Bioorg Med Chem Lett. 1997;7(2):187–92.

    Article  CAS  Google Scholar 

  13. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.

    Article  CAS  PubMed  Google Scholar 

  14. Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015;36(7):422–39. doi:10.1016/j.tips.2015.04.005.

    Article  CAS  PubMed  Google Scholar 

  15. Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002;1(7):493–502. doi:10.1038/nrd839.

    Article  CAS  PubMed  Google Scholar 

  16. Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood. 1996;88(7):2375–84.

    CAS  PubMed  Google Scholar 

  17. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W, et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell. 2003;112:859–71.

    Article  CAS  PubMed  Google Scholar 

  18. Smith KM, Yacobi R, Van Etten RA. Autoinhibition of Bcr-Abl through its SH3 domain. Mol Cell. 2003;12(1):27–37. doi:10.1016/s1097-2765(03)00274-0.

    Article  CAS  PubMed  Google Scholar 

  19. McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol. 1993;13(12):7587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell. 1995;80:213–23.

    Article  CAS  PubMed  Google Scholar 

  21. Nagar B, Hantschel O, Seeliger M, Davies JM, Weis WI, Superti-Furga G, et al. Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. Mol Cell. 2006;21(6):787–98. doi:10.1016/j.molcel.2006.01.035.

    Article  CAS  PubMed  Google Scholar 

  22. Maru Y. Molecular biology of chronic myeloid leukemia. Cancer Sci. 2012;103(9):1601–10. doi:10.1111/j.1349-7006.2012.02346.x.

    Article  CAS  PubMed  Google Scholar 

  23. Deininger MWN. Imatinib – an overview. Haematol Rep. 2005;1(8):20–7.

    CAS  Google Scholar 

  24. Roskoski Jr R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res. 2016;103:26–48. doi:10.1016/j.phrs.2015.10.021.

    Article  CAS  PubMed  Google Scholar 

  25. Schindler T, Bornmann TW, Pellicena P, Miller T, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science. 2000;289(5486):1938–42. doi:10.1126/science.289.5486.1938.

    Article  CAS  PubMed  Google Scholar 

  26. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res. 2002;62:4236–43.

    CAS  PubMed  Google Scholar 

  27. USFDA approved protein kinase inhibitors compiled by Robert Roskoski Jr. www.brimrorg/PKI/PKIshtm. Accessed 23 Mar 2016.

    Google Scholar 

  28. Coutre P, Mologni L, Cleris L, Marchesi E, Buchdunger E, Giardini R, et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst. 1999;91(2):163–8.

    Article  PubMed  Google Scholar 

  29. Wolff NC, Ilaria Jr RL. Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood. 2001;98:2808–16.

    Article  CAS  PubMed  Google Scholar 

  30. Kuribara R, Honda H, Matsui H, Shinjyo T, Inukai T, Sugita K, et al. Roles of Bim in apoptosis of normal and Bcr-Abl-expressing hematopoietic progenitors. Mol Cell Biol. 2004;24(14):6172–83. doi:10.1128/MCB.24.14.6172-6183.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang DCS, et al. Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci. 2006;103(40):14907–12. doi:10.1073/pnas.0608505103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18(4):521–8. doi:10.1038/nm.2713.

    Article  CAS  PubMed  Google Scholar 

  33. Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120(7):2254–64. doi:10.1172/JCI41246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121(1):396–409. doi:10.1172/JCI35721.

    Article  CAS  PubMed  Google Scholar 

  35. Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99:319–25.

    Article  CAS  PubMed  Google Scholar 

  36. Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A, et al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res. 2005;65(19):8912–9. doi:10.1158/0008-5472.CAN-05-0076.

    Article  CAS  PubMed  Google Scholar 

  37. Bixby D, Talpaz M. Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia. 2011;25(1):7–22. doi:10.1038/leu.2010.238.

    Article  CAS  PubMed  Google Scholar 

  38. Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118(5):1208–15. doi:10.1182/blood-2010-12-326405.

    Article  CAS  PubMed  Google Scholar 

  39. Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8(11):1018–29. doi:10.1016/s1470-2045(07)70342-x.

    Article  CAS  PubMed  Google Scholar 

  40. Mathisen MS, Kantarjian HM, Cortes J, Jabbour EJ. Practical issues surrounding the explosion of tyrosine kinase inhibitors for the management of chronic myeloid leukemia. Blood Rev. 2014;28(5):179–87. doi:10.1016/j.blre.2014.06.001.

    Article  CAS  PubMed  Google Scholar 

  41. Tsukahara F, Maru Y. Bag1 directly routes immature BCR-ABL for proteasomal degradation. Blood. 2010;116(18):3582–92. doi:10.1182/blood-2009-10-249623.

    Article  CAS  PubMed  Google Scholar 

  42. Peng C, Brain J, Hu Y, Goodrich A, Kong L, Grayzel D, et al. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood. 2007;110(2):678–85. doi:10.1182/blood-2006-10-054098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Soga S, Akinaga S, Shiotsu Y. Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Des. 2013;19:366–76.

    Article  CAS  PubMed  Google Scholar 

  44. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell. 2005;8(5):355–68. doi:10.1016/j.ccr.2005.10.015.

    Article  CAS  PubMed  Google Scholar 

  45. Goussetis DJ, Gounaris E, Wu EJ, Vakana E, Sharma B, Bogyo M, et al. Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood. 2012;120(17):3555–62. doi:10.1182/blood-2012-01-402578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Warmuth M, Bergmann M, Priess A, Hauslmann K, Emmerich B, Hallek M. The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J Biol Chem. 1997;272(52):33260–70. doi:10.1074/jbc.272.52.33260.

    Article  CAS  PubMed  Google Scholar 

  47. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J. 2001;21:5766–74.

    Article  Google Scholar 

  48. Samanta A, Perazzona B, Chakraborty S, Sun X, Modi H, Bhatia R, et al. Janus kinase 2 regulates Bcr-Abl signaling in chronic myeloid leukemia. Leukemia. 2011;25(3):463–72. doi:10.1038/leu.2010.287.

    Article  CAS  PubMed  Google Scholar 

  49. Wu J, Meng F, Kong LY, Peng Z, Ying Y, Bornmann WG, et al. Association between imatinib-resistant BCR-ABL mutation-negative leukemia and persistent activation of LYN kinase. J Natl Cancer Inst. 2008;100(13):926–39. doi:10.1093/jnci/djn188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jatiani SS, Cosenza SC, Reddy MV, Ha JH, Baker SJ, Samanta AK, et al. A non-ATP-competitive dual inhibitor of JAK2V617F and BCR-ABLT315I kinases: elucidation of a novel therapeutic spectrum based on substrate competitive inhibition. Genes Cancer. 2010;1(4):331–45. doi:10.1177/1947601910371337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bolton-Gillespie E, Schemionek M, Klein H-U, Flis S, Hoser G, Lange T, et al. Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood. 2013;121:4175–83. doi:10.1182/blood-2012-11-.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deutsch E, Dugray A, AbdulKarim B, Marangoni E, Maggiorella L, Vaganay S, et al. BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood. 2001;97:2084–90.

    Article  CAS  PubMed  Google Scholar 

  53. Valeri A, Alonso-Ferrero ME, Rio P, Pujol MR, Casado JA, Perez L, et al. Bcr/Abl interferes with the Fanconi anemia/BRCA pathway: implications in the chromosomal instability of chronic myeloid leukemia cells. PLoS ONE. 2010;5(12):e15525. doi:10.1371/journal.pone.0015525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Slupianek A, Poplawski T, Jozwiakowski SK, Cramer K, Pytel D, Stoczynska E, et al. BCR/ABL stimulates WRN to promote survival and genomic instability. Cancer Res. 2011;71(3):842–51. doi:10.1158/0008-5472.CAN-10-1066.

    Article  CAS  PubMed  Google Scholar 

  55. Slupianek A, Falinski R, Znojek P, Stoklosa T, Flis S, Doneddu V, et al. BCR-ABL1 kinase inhibits uracil DNA glycosylase UNG2 to enhance oxidative DNA damage and stimulate genomic instability. Leukemia. 2013;27(3):629–34. doi:10.1038/leu.2012.294.

    Article  CAS  PubMed  Google Scholar 

  56. Yu C, Rahmani M, Almenara J, Subler M, Krystal G, Conrad D, et al. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571- sensitive and -resistant Bcr/Abl+human myeloid leukemia cells. Cancer Res. 2003;63:2118–26.

    CAS  PubMed  Google Scholar 

  57. Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J, et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia- blast crisis cells. Cancer Res. 2003;63:5126–35.

    CAS  PubMed  Google Scholar 

  58. Kircher B, Schumacher P, Petzer A, Hoflehner E, Haun M, Wolf AM, et al. Anti-leukemic activity of valproic acid and imatinib mesylate on human Ph+ ALL and CML cells in vitro. Eur J Haematol. 2009;83(1):48–56. doi:10.1111/j.1600-0609.2009.01242.x.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang B, Strauss AC, Chu S, Li M, Ho Y, Shiang KD, et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell. 2010;17(5):427–42. doi:10.1016/j.ccr.2010.03.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wang Z, Yuan H, Roth M, Stark JM, Bhatia R, Chen WY. SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells. Oncogene. 2013;32(5):589–98. doi:10.1038/onc.2012.83.

    Article  CAS  PubMed  Google Scholar 

  61. Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 2012;21(2):266–81. doi:10.1016/j.ccr.2011.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ng KP, Manjeri A, Lee KL, Huang W, Tan SY, Chuah CT, et al. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood. 2014;123(21):3316–26. doi:10.1182/blood-2013-07-511907.

    Article  CAS  PubMed  Google Scholar 

  63. Ashihara E, Takada T, Maekawa T. Targeting the canonical Wnt/beta-catenin pathway in hematological malignancies. Cancer Sci. 2015;106(6):665–71. doi:10.1111/cas.12655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–67.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang B, Li M, McDonald T, Holyoake TL, Moon RT, Campana D, et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling. Blood. 2013;121(10):1824–38. doi:10.1182/blood-2012-.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Briscoe J, Therond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013;14(7):416–29. doi:10.1038/nrm3598.

    Article  PubMed  CAS  Google Scholar 

  67. Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell. 2008;14(3):238–49. doi:10.1016/j.ccr.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458(7239):776–9. doi:10.1038/nature07737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Irvine DA, Copland M. Targeting hedgehog in hematologic malignancy. Blood. 2012;119(10):2196–204. doi:10.1182/blood-2011-10-383752.

    Article  CAS  PubMed  Google Scholar 

  70. Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA, Stein L, et al. Genetic and pharmacologic inhibition of beta-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell. 2012;10(4):412–24. doi:10.1016/j.stem.2012.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jin L, Tabe Y, Konoplev S, Xu Y, Leysath CE, Lu H, et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther. 2008;7(1):48–58. doi:10.1158/1535-7163.MCT-07-0042.

    Article  CAS  PubMed  Google Scholar 

  72. Beider K, Darash-Yahana M, Blaier O, Koren-Michowitz M, Abraham M, Wald H, et al. Combination of imatinib with CXCR4 antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Mol Cancer Ther. 2014;13(5):1155–69. doi:10.1158/1535-7163.MCT-13-0410.

    Article  CAS  PubMed  Google Scholar 

  73. Altman BJ, Jacobs SR, Mason EF, Michalek RD, MacIntyre AN, Coloff JL, et al. Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis. Oncogene. 2011;30(16):1855–67. doi:10.1038/onc.2010.561.

    Article  CAS  PubMed  Google Scholar 

  74. Helgason GV, Karvela M, Holyoake TL. Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood. 2011;118(8):2035–43. doi:10.1182/blood-2011-01-330621.

    Article  CAS  PubMed  Google Scholar 

  75. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 2009;119(5):1109–23. doi:10.1172/JCI35660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sillaber C, Mayerhofer M, Bohm A, Vales A, Gruze A, Aichberger KJ, et al. Evaluation of antileukaemic effects of rapamycin in patients with imatinib-resistant chronic myeloid leukaemia. Eur J Clin Investig. 2008;38(1):43–52. doi:10.1111/j.1365-2362.2007.01892.x.

    Article  CAS  Google Scholar 

  77. Li J, Xue L, Hao H, Han Y, Yang J, Luo J. Rapamycin provides a therapeutic option through inhibition of mTOR signaling in chronic myelogenous leukemia. Oncol Rep. 2012;27(2):461–6. doi:10.3892/or.2011.1502.

    CAS  PubMed  Google Scholar 

  78. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature. 2008;453(7198):1072–8. doi:10.1038/nature07016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet. 2009;41(7):783–92. doi:10.1038/ng.389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Prost S, Relouzat F, Spentchian M, Ouzegdouh Y, Saliba J, Massonnet G, et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARgamma agonists. Nature. 2015;525(7569):380–3. doi:10.1038/nature15248.

    Article  CAS  PubMed  Google Scholar 

  81. Eechoute K, Sparreboom A, Burger H, Franke RM, Schiavon G, Verweij J, et al. Drug transporters and imatinib treatment: implications for clinical practice. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(3):406–15. doi:10.1158/1078-0432.CCR-10-2250.

    Article  CAS  Google Scholar 

  82. Hamada A, Miyano H, Watanabe H, Saito H. Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther. 2003;307(2):824–8. doi:10.1124/jpet.103.055574.

    Article  CAS  PubMed  Google Scholar 

  83. Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104(12):3739–45. doi:10.1182/blood-2003-12-4276.

    Article  CAS  PubMed  Google Scholar 

  84. Hirayama C, Watanabe H, Nakashima R, Nanbu T, Hamada A, Kuniyasu A, et al. Constitutive overexpression of P-glycoprotein, rather than breast cancer resistance protein or organic cation transporter 1, contributes to acquisition of imatinib-resistance in K562 cells. Pharm Res. 2008;25(4):827–35.

    Article  CAS  PubMed  Google Scholar 

  85. Glodkowska-Mrowka E, Mrowka P, Basak GW, Niesiobedzka-Krezel J, Seferynska I, Wlodarski PK, et al. Statins inhibit ABCB1 and ABCG2 drug transporter activity in chronic myeloid leukemia cells and potentiate antileukemic effects of imatinib. Exp Hematol. 2014;42(6):439–47. doi:10.1016/j.exphem.2014.02.006.

    Article  CAS  PubMed  Google Scholar 

  86. Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014;2014:357027. doi:10.1155/2014/357027.

    PubMed  PubMed Central  Google Scholar 

  87. Breccia M, Molica M, Alimena G. How tyrosine kinase inhibitors impair metabolism and endocrine system function: a systematic updated review. Leuk Res. 2014;38(12):1392–8. doi:10.1016/j.leukres.2014.09.016.

    Article  CAS  PubMed  Google Scholar 

  88. Vandyke K, Fitter S, Dewar AL, Hughes TP, Zannettino ACW. Dysregulation of bone remodeling by imatinib mesylate. Blood. 2010;115(4):766–74. doi:10.1182/blood-2009-.

    Article  CAS  PubMed  Google Scholar 

  89. Chislock EM, Pendergast AM. Abl family kinases regulate endothelial barrier function in vitro and in mice. PLoS ONE. 2013;8(12):e85231. doi:10.1371/journal.pone.0085231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Hu W, Huang Y. Targeting the platelet-derived growth factor signalling in cardiovascular disease. Clin Exp Pharmacol Physiol. 2015;42(12):1221–4. doi:10.1111/1440-1681.12478.

    Article  CAS  PubMed  Google Scholar 

  91. Reddiconto G, Toto C, Palama I, De Leo S, de Luca E, De Matteis S, et al. Targeting of GSK3beta promotes imatinib-mediated apoptosis in quiescent CD34beta chronic myeloid leukemia progenitors, preserving normal stem cells. Blood. 2012;119(10):2335–45. doi:10.1182/blood-2011-06-.

    Article  CAS  PubMed  Google Scholar 

  92. Schuster K, Zheng J, Arbini AA, Zhang CC, Scaglioni PP. Selective targeting of the mTORC1/2 protein kinase complexes leads to antileukemic effects in vitro and in vivo. Blood Cancer J. 2011;1(9):e34. doi:10.1038/bcj.2011.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med. 2010;16(2):205–13. doi:10.1038/nm.2091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H, et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci. 2010;107(28):12469–74. doi:10.1073/pnas.1005114107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature. 2010;463(7281):676–80. doi:10.1038/nature08734.

    Article  CAS  PubMed  Google Scholar 

  96. Moller GM, Frost V, Melo JV, Chantry A. Upregulation of the TGF beta signalling pathway by Bcr-Abl: implications for haemopoietic cell growth and chronic myeloid leukaemia. FEBS Lett. 2007;581(7):1329–34. doi:10.1016/j.febslet.2007.02.048.

    Article  CAS  PubMed  Google Scholar 

  97. Samanta AK, Lin H, Sun T, Kantarjian H, Arlinghaus RB. Janus kinase 2: a critical target in chronic myelogenous leukemia. Cancer Res. 2006;66(13):6468–72. doi:10.1158/0008-5472.CAN-06-0025.

    Article  CAS  PubMed  Google Scholar 

  98. Traer E, MacKenzie R, Snead J, Agarwal A, Eiring AM, O’Hare T, et al. Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia. 2012;26(5):1140–3. doi:10.1038/leu.2011.325.

    Article  CAS  PubMed  Google Scholar 

  99. Chen M, Gallipoli P, DeGeer D, Sloma I, Forrest DL, Chan M, et al. Targeting primitive chronic myeloid leukemia cells by effective inhibition of a new AHI-1-BCR-ABL-JAK2 complex. J Natl Cancer Inst. 2013;105(6):405–23. doi:10.1093/jnci/djt006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gallipoli P, Cook A, Rhodes S, Hopcroft L, Wheadon H, Whetton AD, et al. JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood. 2014;124(9):1492–501. doi:10.1182/blood-2013-12-.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ, et al. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest. 2013;123(10):4144–57. doi:10.1172/JCI68951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Neviani P, Perrotti D. SETting OP449 into the PP2A-activating drug family. Clin Cancer Res: Off J Am Assoc Cancer Res. 2014;20(8):2026–8. doi:10.1158/1078-0432.CCR-14-0166.

    Article  CAS  Google Scholar 

  103. Agarwal A, MacKenzie RJ, Pippa R, Eide CA, Oddo J, Tyner JW, et al. Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia. Clin Cancer Res: Off J Am Assoc Cancer Res. 2014;20(8):2092–103. doi:10.1158/1078-0432.CCR-13-2575.

    Article  CAS  Google Scholar 

  104. Hegde S, Kaushal N, Ravindra KC, Chiaro C, Hafer KT, Gandhi UH, et al. Delta12-prostaglandin J3, an omega-3 fatty acid–derived metabolite, selectively ablates leukemia stem cells in mice. Blood. 2011;118(26):6909–19. doi:10.1182/blood-2010-.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Walker CJ, Oaks JJ, Santhanam R, Neviani P, Harb JG, Ferenchak G, et al. Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph1 leukemias. Blood. 2013;122:3034–44. doi:10.1182/blood-2013-04-.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Preudhomme C, Guilhot J, Nicolini FE, Guerci-Bresler A, Rigal-Huguet F, Maloisel F, et al. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med. 2010;2511–21.

    Google Scholar 

  107. Cortes J, Quintas-Cardama A, Jones D, Ravandi F, Garcia-Manero G, Verstovsek S, et al. Immune modulation of minimal residual disease in early chronic phase chronic myelogenous leukemia: a randomized trial of frontline high-dose imatinib mesylate with or without pegylated interferon alpha-2b and granulocyte-macrophage colony-stimulating factor. Cancer. 2011;117(3):572–80. doi:10.1002/cncr.25438.

    Article  CAS  PubMed  Google Scholar 

  108. Talpaz M, Hehlmann R, Quintas-Cardama A, Mercer J, Cortes J. Re-emergence of interferon-alpha in the treatment of chronic myeloid leukemia. Leukemia. 2013;27(4):803–12. doi:10.1038/leu.2012.313.

    Article  CAS  PubMed  Google Scholar 

  109. Simonsson B, Gedde-Dahl T, Markevarn B, Remes K, Stentoft J, Almqvist A, et al. Combination of pegylated IFN-alpha2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia. Blood. 2011;118(12):3228–35. doi:10.1182/blood-2011-02-336685.

    Article  CAS  PubMed  Google Scholar 

  110. Goff DJ, Court Recart A, Sadarangani A, Chun HJ, Barrett CL, Krajewska M, et al. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013;12(3):316–28. doi:10.1016/j.stem.2012.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiro Maru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tsukahara, F., Maru, Y. (2017). Imatinib: Basic Results. In: Ueda, T. (eds) Chemotherapy for Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-10-3332-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3332-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3330-8

  • Online ISBN: 978-981-10-3332-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics