Skip to main content

Advertisement

Log in

An Update Overview on Mechanistic Data and Biomarker Levels in Cobalt and Chromium-Induced Neurodegenerative Diseases

  • Brief Report
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

There is increasing evidence that the imbalance of metals as cobalt (Co) and chromium (Cr) may increase the risk of development and progression of neurodegenerative diseases (NDDs). The human exposure to Co and Cr is derived mostly from industry, orthopedic implants, and polluted environments. Neurological effects of Co and Cr include memory deficit, olfactory dysfunction, spatial disorientation, motor neuron disease, and brain cancer. Mechanisms of Co and Cr neurotoxicity included DNA damage and genomic instability, epigenetic changes, mitochondrial disturbance, lipid peroxidation, oxidative stress, inflammation, and apoptosis. This paper seeks to overview the Co and Cr sources, the mechanisms by which these metals induce NDDs, and their levels in fluids of the general population and patients affected by NDDs. To this end, evidence of Co and Cr unbalance in the human body, mechanistic data, and neurological symptoms were collected using in vivo mammalian studies and human samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author/s.

References

  1. Anyachor CP, Dooka DB, Chinna NO, Amadi CN, Bocca B, Ruggieri F, Senofonte M, Frazzoli C, Orisakwe OE (2022) Mechanistic considerations and biomarkers level in nickel-induced neurodegenerative diseases: an updated systematic review. IBRO Neurosci Rep 13:136–146. https://doi.org/10.1016/j.ibneur.2022.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Azeh EG, Udoka PF, Nweke FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Karcioglu O, Arslan B (ed) Poisoning in the Modern World - New Tricks for an Old Dog? https://doi.org/10.5772/intechopen.82511

  3. Chen ZR, Huang JB, Yang SL, Hong FF (2022) Role of cholinergic signaling in Alzheimer’s disease. Molecules 27(6):1816. https://doi.org/10.3390/molecules27061816

    Article  CAS  PubMed Central  Google Scholar 

  4. Paustenbach DJ, Tvermoes BE, Unice KM, Finley BL, Kerger BD (2013) A review of the health hazards posed by cobalt. Crit Rev Tox 43(4):316–362. https://doi.org/10.3109/10408444.2013.779633

    Article  CAS  Google Scholar 

  5. ATSDR (Agency for Toxicological Substances and Disease Registry, 2023) Toxicological profile for cobalt. Draft for public comment. Available at: https://www.atsdr.cdc.gov/ToxProfiles/tp33.pdf [accessed 22 May 2023]

  6. Garcia MD, Hur M, Chen JJ, Bhatti MT (2020) Cobalt toxic optic neuropathy and retinopathy: case report and review of the literature. Am J Ophthal Case Rep 17:100606. https://doi.org/10.1016/j.ajoc.2020.100606

    Article  Google Scholar 

  7. Tang J, Zheng C, Zheng F, Li Y, Wang Y, Aschner M, Guo Z, Yu G, Wu S, Li H (2020) Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes. Environ Pollut 266:115326. https://doi.org/10.1016/j.envpol.2020.115326

    Article  CAS  PubMed  Google Scholar 

  8. Van Der Straeten C, Van Quickenborne D, De Roest B, Calistri A, Victor J, De Smet K (2013) Metal ion levels from well-functioning Birmingham Hip Resurfacings decline significantly at ten years. Bone Joint J 95-B(10):1332–8. https://doi.org/10.1302/0301-620X.95B10.32022

    Article  Google Scholar 

  9. Tvermoes BE, Paustenbach DJ, Kerger BD, Finley BL, Unice KM (2015) Review of cobalt toxicokinetics following oral dosing: implications for health risk assessments and metal-on-metal hip implant patients. Crit Rev Toxicol 45(5):367–387. https://doi.org/10.3109/10408444.2014.985818

    Article  CAS  Google Scholar 

  10. Zheng F, Li Y, Zhang F, Sun Y, Zheng C, Luo Z, Wang YL, Aschner M, Zheng H, Lin L, Cai P, Shao W, Guo Z, Zheng M, Zhou XZ, Lu KP, Wu S, Li H (2021) Cobalt induces neurodegenerative damages through Pin1 inactivation in mice and human neuroglioma cells. J Hazard Mater 419:126378. https://doi.org/10.1016/j.jhazmat.2021.126378

    Article  CAS  PubMed  Google Scholar 

  11. Hedberg YS, Erfani B, Matura M, Lidén C (2018) Chromium(III) release from chromium-tanned leather elicits allergic contact dermatitis: a use test study. Contact Dermatitis 78(5):307–314. https://doi.org/10.1111/cod.12946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DesMarais TL, Costa M (2019) Mechanisms of chromium-induced toxicity. Curr Opin Toxicol 14:1–7. https://doi.org/10.1016/j.cotox.2019.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  13. IARC (2012) Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum, 100C:1–501. Available from: http://publications.iarc.fr/120 

  14. ATSDR (Agency for Toxicological Substances and Disease Registry, 2022). The ATSDR 2022 substance priority list. Available at: https://www.atsdr.cdc.gov/spl/index.html. Accessed 22 May 2023

  15. Mahiout S, Kiilunen M, Vermeire T, Viegas S, Woutersen M, Santonen T (2022) Occupational exposure to Cr(VI) in Finland in 1980–2016 and related lung cancer risk assessment. Regul Toxicol Pharmacol 136:105276. https://doi.org/10.1016/j.yrtph.2022.105276

    Article  CAS  PubMed  Google Scholar 

  16. Linos A, Petralias A, Christophi CA, Christoforidou E, Kouroutou P, Stoltidis M, Veloudaki A, Tzala E, Makris KC, Karagas MR (2011) Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece—an ecological study. Environ Health 10:50. https://doi.org/10.1186/1476-069X-10-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tseng CH, Lee IH, Chen YC (2019) Evaluation of hexavalent chromium concentration in water and its health risk with a system dynamics model. Sci Total Environ 669:103–111. https://doi.org/10.1016/j.scitotenv.2019.03.103

    Article  CAS  PubMed  Google Scholar 

  18. Al Osman M, Yang F, Massey IY (2019) Exposure routes and health effects of heavy metals on children. Biometals 32(4):563–573. https://doi.org/10.1007/s10534-019-00193-5

    Article  CAS  PubMed  Google Scholar 

  19. Husain N, Mahmood R (2017) Hexavalent chromium induces reactive oxygen species and impairs the antioxidant power of human erythrocytes and lymphocytes: decreased metal reducing and free radical quenching ability of the cells. Toxicol Ind Health 33(8):623–635. https://doi.org/10.1177/0748233717703892

    Article  CAS  PubMed  Google Scholar 

  20. Harrison-Brown M, Scholes C, Field C, McQuilty R, Farah SB, Nizam I, Kerr D, Kohan L (2020) Limited penetration of cobalt and chromium ions into the cerebrospinal fluid following metal on metal arthroplasty: a cross-sectional analysis. Clin Toxicol (Phila) 58(4):233–240. https://doi.org/10.1080/15563650.2019.1636993

    Article  CAS  PubMed  Google Scholar 

  21. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans—a review of the potential sources and systemic health effects. Toxicology 387:43–56. https://doi.org/10.1016/j.tox.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  22. Lison D (2022) Cobalt, Handbook on the toxicology of metals, Volume II. pp 221-242. https://doi.org/10.1016/B978-0-12-822946-0.00008

  23. Barceloux DG (1999) Cobalt. J Toxicol Clin Toxicol 37(2):201–206. https://doi.org/10.1081/CLT-100102420

    Article  CAS  PubMed  Google Scholar 

  24. Gray JE, Eppinger RG (2012) Distribution of Cu Co, As, and Fe in mine waste, sediment, soil, and water in and around mineral deposits and mines of the Idaho Cobalt Belt, USA. Appl Geochemistry 27:1053–1062. https://doi.org/10.1016/j.apgeochem.2012.02.001

    Article  CAS  Google Scholar 

  25. Feng S, Wang X, Wei G, Peng P, Yang Y, Cao Z (2007) Leachates of municipal solid waste incineration bottom ash from Macao: heavy metal concentrations and genotoxicity. Chemosphere 67(6):1133–1137. https://doi.org/10.1016/j.chemosphere.2006.11.030

    Article  CAS  PubMed  Google Scholar 

  26. Obeid R, Heil SG, Verhoeven MMA, van den Heuvel EGHM, de Groot LCPGM, Eussen SJPM (2019) Vitamin B12 intake from animal foods, biomarkers, and health aspects. Front Nutr 6:93. https://doi.org/10.3389/fnut.2019.00093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. IARC monographs on the evaluation of carcinogenic risks to humans (2006) Cobalt in hard metals and cobalt sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide/IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (Lyon, France) v. 86: 1–35

  28. Arnich N, Sirot V, Rivière G, Jean J, Noël L, Guérin T, Leblanc JC (2012) Dietary exposure to trace elements and health risk assessment in the 2nd French total diet study. Food Chem Toxicol 50(7):2432–2449. https://doi.org/10.1016/j.fct.2012.04.016

    Article  CAS  PubMed  Google Scholar 

  29. Finley BL, Monnot AD, Paustenbach DJ, Gafney SH (2012) Derivation of a chronic oral reference dose for cobalt. Regul Toxicol Pharmacol 64:491–503. https://doi.org/10.1016/j.yrtph.2012.08.022

    Article  CAS  PubMed  Google Scholar 

  30. French Food Safety Agency (2010) Opinion of the French Food Safety Agency on a request for scientific and technical support regarding the migration of cobalt from porcelain oven-dishes intended to come in contact with food. Request no. 2010-SA-0095. Available at: https://www.anses.fr/en/system/files/MCDA2010sa0095EN.pdf [accessed 6 November 2023]

  31. Jaiswal AK, Kumar R, Thakur A, Puri P, Kumar R, Kanojia R (2019) Cobalt toxicity/poisoning with analytical aspects and its management. IJMLR 4(3):29–36. https://doi.org/10.35503/IJMLR.2019.4305

    Article  Google Scholar 

  32. Keegan GM, Learmonth ID, Case CP (2008) A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from industry and surgical implants. Crit Rev Toxicol 38(8):645–674. https://doi.org/10.1080/10408440701845534

    Article  CAS  PubMed  Google Scholar 

  33. Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q (20107) Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 14(1):38. https://doi.org/10.1186/s12989-017-0219-z

  34. Forte G, Petrucci F, Bocca B (2008) Metal allergens of growing significance: epidemiology, immunotoxicology, strategies for testing and prevention. Inflamm Allergy Drug Targets 7(3):145–162. https://doi.org/10.2174/187152808785748146

    Article  CAS  PubMed  Google Scholar 

  35. Coverdale JPC, Katundu KGH, Sobczak AIS, Arya S, Blindauer CA, Stewart AJ (2018) Ischemia-modified albumin: crosstalk between fatty acid and cobalt binding. Prostaglandins Leukot Essent Fatty Acids 135:147–157. https://doi.org/10.1016/j.plefa.2018.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tunç S, Atagün Mİ, Neşelioğlu S, Bilgin YY, Başbuğ HS, Erel Ö (2019) Ischemia-modified albumin: a unique marker of global metabolic risk in schizophrenia and mood disorders. Psychiatry Clin Psychopharmacol 29:123–129. https://doi.org/10.1080/24750573.2018.1517466

    Article  CAS  Google Scholar 

  37. Petrova E, Pavlova E, Tinkov AA, Ajsuvakova OP, Skalny AV, Rashev P, Vladov I, Gluhcheva Y (2020) Cobalt accumulation and iron-regulatory protein profile expression in immature mouse brain after perinatal exposure to cobalt chloride. Chem Biol Interact 329:109217. https://doi.org/10.1016/j.cbi.2020.109217

    Article  CAS  PubMed  Google Scholar 

  38. Wang C, Zhang R, Wei X, Lv M, Jiang Z (2020) Metalloimmunology: the metal ion-controlled immunity. Adv Immunol 145:187–241. https://doi.org/10.1016/bs.ai.2019.11.007

    Article  CAS  PubMed  Google Scholar 

  39. Skjørringe T, Burkhart A, Johnsen KB, Moos T (2015) Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci 8:19. https://doi.org/10.3389/fnmol.2015.00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Howitt J, Putz U, Lackovic J, Doan A, Dorstyn L, Cheng H, Yang B, Chan-Ling T, Silke J, Kumar S, Tan SS (2009) Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci U S A 106(36):15489-94. https://doi.org/10.1073/pnas.0904880106

  41. Bowers K, Srai SKS (2018) The trafficking of metal ion transporters of the Zrt- and Irt-like protein family. Traffic 19(11):813–822. https://doi.org/10.1111/tra.12602

    Article  CAS  PubMed  Google Scholar 

  42. Kumar M, Sawhney N, Lal R (2021) Chemistry of heavy metals in the environment, in: Heavy metals in the environment, Elsevier pp. 9–37. https://doi.org/10.1016/B978-0-12-821656-9.00002-X

  43. Osman D, Cooke A, Young TR, Deery E, Robinson NJ (1868) Warren MJ (2020) The requirement for cobalt in vitamin B12: a paradigm for protein metalation. Biochim Biophys Acta Mol Cell Res 1:118896. https://doi.org/10.1016/j.bbamcr.2020.118896

    Article  CAS  Google Scholar 

  44. Tvermoes BE, Unice KM, Paustenbach DJ, Finley BL, Otani JM, Galbraith DA (2014) Effects and blood concentrations of cobalt after ingestion of 1 mg/d by human volunteers for 90 d. Am J Clin Nutr 99(3):632–646. https://doi.org/10.3945/ajcn.113.071449

    Article  CAS  PubMed  Google Scholar 

  45. Kobla HV, Volpe SL (2000) Chromium, exercise, and body composition. Crit Rev Food Sci Nutr 40(4):291–308. https://doi.org/10.1080/10408690091189167

    Article  CAS  PubMed  Google Scholar 

  46. Tran NL, Barraj LM, Scrafford C, Bi X, Troxell T (2014) Partitioning of dietary metal intake—a metal dietary exposure screening tool. Risk Anal 35(5):872–881. https://doi.org/10.1111/risa.12322

    Article  PubMed  Google Scholar 

  47. EPA (Environmental Protection Agency, 1998) Toxicological review of trivalent chromium. Available at: https://iris.epa.gov/static/pdfs/0028tr.pdf [accessed 6 November 2023]

  48. EFSA (European Food Safety Authority, 2014) Scientific opinion on dietary reference values for chromium Available at: https://www.efsa.europa.eu/en/efsajournal/pub/3845 [accessed 6 November 2023]

  49. Li J, Luo G, He L, Xu J, Lyu J (2018) Analytical approaches for determining chemical oxygen demand in water bodies: a review. Crit Rev Anal Chem 48(1):47–65. https://doi.org/10.1080/10408347.2017.1370670

    Article  CAS  PubMed  Google Scholar 

  50. ATSDR (Agency for Toxicological Substances and Disease Registry, 2012). Toxicological profile for chromium. Available at: https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf [accessed 22 May 2023].

  51. Ndaw S, Leso V, Bousoumah R, Rémy A, Bocca B, Duca RC, Godderis L, Hardy E, Janasik B, van Nieuwenhuyse A, Pinhal H, Poels K, Porras SP, Ruggieri F, Santonen T, Santos SR, Scheepers PTJ, Silva MJ, Verdonck J, Viegas S, Wasowicz W, Iavicoli I; HBM4EU chromates study team (2022) HBM4EU chromates study—usefulness of measurement of blood chromium levels in the assessment of occupational Cr(VI) exposure. Environ Res 214(1):113758. https://doi.org/10.1016/j.envres.2022.113758

  52. Bocca B, Leso V, Battistini B, Caimi S, Senofonte M, Fedele M, Cavallo DM, Cattaneo A, Lovreglio P, Iavicoli I (2023) Human biomonitoring and personal air monitoring. An integrated approach to assess exposure of stainless-steel welders to metal-oxide nanoparticles. Environ Res 216(3):114736. https://doi.org/10.1016/j.envres.2022.114736

  53. Green B, Griffiths E, Almond S (2007) Neuropsychiatric symptoms following metal-on-metal implant failure with cobalt and chromium toxicity. BMC Psychiatry 17(1):33. https://doi.org/10.1186/s12888-016-1174-1

    Article  Google Scholar 

  54. Merritt K, Brown SA (1995) Release of hexavalent chromium from corrosion of stainless steel and cobalt-chromium alloys. J Biomed Mater Res 29(5):627–633. https://doi.org/10.1002/jbm.820290510

    Article  CAS  Google Scholar 

  55. Williams M, Bozhilov K, Ghai S, Talbot P (2017) Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs. PLoS One 12(4):e0175430. https://doi.org/10.1371/journal.pone.0175430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bradberry SM, Wilkinson JM, Ferner RE (2014) Systemic toxicity related to metal hip prostheses. Clin Toxicol (Phila) 52(8):837–847. https://doi.org/10.3109/15563650.2014.944977

    Article  CAS  PubMed  Google Scholar 

  57. Caparros-Gonzalez RA, Giménez-Asensio MJ, González-Alzaga B, Aguilar-Garduño C, Lorca-Marín JA, Alguacil J, Gómez-Becerra I, Gómez-Ariza JL, García-Barrera T, Hernandez AF, López-Flores I, Rohlman DS, Romero-Molina D, Ruiz-Pérez I, Lacasaña M (2018) Childhood chromium exposure and neuropsychological development in children living in two polluted areas in southern Spain. Environ Pollut 252(Pt B):1550–1560. https://doi.org/10.1016/j.envpol.2019.06.084

    Article  CAS  Google Scholar 

  58. Sánchez-Díaz G, Escobar F, Badland H, Arias-Merino G, Posada de la Paz M, Alonso-Ferreira V (2018) Geographic analysis of motor neuron disease mortality and heavy metals released to rivers in Spain. Int J Environ Res Public Health 15(11):2522. https://doi.org/10.3390/ijerph15112522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rajan MT, Jagannatha Rao KS, Mamatha BM, Rao RV, Shanmugavelu P, Menon RB, Pavithran MV (1997) Quantification of trace elements in normal human brain by inductively coupled plasma atomic emission spectrometry. J Neurol Sci 146(2):153–166. https://doi.org/10.1016/S0022-510X(96)00300-0

    Article  CAS  PubMed  Google Scholar 

  60. Calderón-Garcidueñas L, Serrano-Sierra A, Torres-Jardón R, Zhu H, Yuan Y, Smith D, Delgado-Chávez R, Cross JV, Medina-Cortina H, Kavanaugh M, Guilarte TR (2013) The impact of environmental metals in young urbanites’ brains. Exp Toxicol Pathol 65(5):503–511. https://doi.org/10.1016/j.etp.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  61. Bocca B, Alimonti A, Petrucci F, Violante N, Sancesario G, Forte G, Senofonte O (2004) Quantification of trace elements by sector field inductively coupled plasma mass spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson’s disease. Spectrochim Acta B: At Spectrosc 59:559–566. https://doi.org/10.1016/j.sab.2004.02.007

    Article  CAS  Google Scholar 

  62. Alimonti A, Bocca B, Pino A, Ruggieri F, Forte G, Sancesario G (2007) Elemental profile of cerebrospinal fluid in patients with Parkinson’s disease. J Trace Elem Med Biol 21(4):234–241. https://doi.org/10.1016/j.jtemb.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  63. Samanta S, Haldar S, Ghosh TK (2008) Production and carcase traits in broiler chickens given diets supplemented with inorganic trivalent chromium and an organic acid blend. Br Poult Sci 49(2):155–163. https://doi.org/10.1080/00071660801946950

    Article  CAS  PubMed  Google Scholar 

  64. Lukaski HC (2019) Chapter 2 - Effects of chromium(III) as a nutritional supplement, in: the nutritional biochemistry of chromium (III). Elsevier, pp. 61–77. https://doi.org/10.1016/B978-0-444-64121-2.00002-7

  65. Levina A, Harris HH, Lay PA (2005) Binding of chromium(VI) to histones: implications for chromium(VI)-induced genotoxicity. J Biol Inorg Chem 11(2):225–234. https://doi.org/10.1007/s00775-005-0068-3

    Article  CAS  PubMed  Google Scholar 

  66. Edwards KC, Kim H, Vincent JB (2020) Release of trivalent chromium from serum transferrin is sufficiently rapid to be physiologically relevant. J Inorg Biochem 202:110901. https://doi.org/10.1016/j.jinorgbio.2019.110901

    Article  CAS  PubMed  Google Scholar 

  67. Salama A, Hegazy R, Hassan A (2016) Intranasal chromium induces acute brain and lung injuries in rats: assessment of different potential hazardous effects of environmental and occupational exposure to chromium and introduction of a novel pharmacological and toxicological animal model. PLoS One 11(12):e0168688. https://doi.org/10.1371/journal.pone.0168688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng X, Li S, Li J, Lv Y, Wang X, Wu P, Yang Q, Tang Y, Liu Y, Zhang Z (2020) Hexavalent chromium induces renal apoptosis and autophagy via disordering the balance of mitochondrial dynamics in rats. Ecotoxicol Environ Saf 204:111061. https://doi.org/10.1016/j.ecoenv.2020.111061

    Article  CAS  PubMed  Google Scholar 

  69. Kirman CR, Hays SM, Aylward LL, Suh M, Harris MA, Thompson CM, Haws LC, Proctor DM (2012) Physiologically based pharmacokinetic model for rats and mice orally exposed to chromium. Chem Biol Interact 200(1):45–64. https://doi.org/10.1016/j.cbi.2012.08.016

    Article  CAS  PubMed  Google Scholar 

  70. Tang J, Li Y, Liu X, Yu G, Zheng F, Guo Z, Zhang Y, Shao W, Wu S, Li H (2023) Cobalt induces neurodegenerative damages through impairing autophagic flux by activating hypoxia-inducible factor-1α triggered ROS overproduction. Sci Total Environ 857(Pt 2):159432. https://doi.org/10.1016/j.scitotenv.2022.159432

    Article  CAS  PubMed  Google Scholar 

  71. Zheng F, Luo Z, Zheng C, Li J, Zeng J, Yang H, Chen J, Jin Y, Aschner M, Wu S, Zhang Q, Li H (2019) Comparison of the neurotoxicity associated with cobalt nanoparticles and cobalt chloride in Wistar rats. Toxicol Appl Pharmacol 369:90–99. https://doi.org/10.1016/j.taap.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  72. Gómez-Arnaiz S, Tate RJ, Grant MH (2022) Cobalt Neurotoxicity: transcriptional effect of elevated cobalt blood levels in the rodent brain. Toxics 10(2):59. https://doi.org/10.3390/toxics10020059

    Article  CAS  PubMed  Google Scholar 

  73. Akinrinde AS, Adebiyi OE (2019) Neuroprotection by luteolin and gallic acid against cobalt chloride-induced behavioural, morphological and neurochemical alterations in Wistar rats. Neurotoxicology 74:252–263. https://doi.org/10.1016/j.neuro.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  74. Caltana L, Merelli A, Lazarowski A, Brusco A (2009) Neuronal and glial alterations due to focal cortical hypoxia induced by direct cobalt chloride (CoCl2) brain injection. Neurotox Res 15(4):348–358. https://doi.org/10.1007/s12640-009-9038-9

    Article  CAS  PubMed  Google Scholar 

  75. Saleh EM, Hamdy GM, Hassan RE (2022) Neuroprotective effect of sodium alginate against chromium-induced brain damage in rats. PLoS ONE 17(4):e0266898. https://doi.org/10.1371/journal.pone.0266898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu Y, Wang L, Zhu J, Jiang P, Zhang Z, Li L, Wu Q (2021) Chromium induced neurotoxicity by altering metabolism in zebrafish larvae. Ecotoxicol Environ Saf 228:112983. https://doi.org/10.1016/j.ecoenv.2021.112983

    Article  CAS  PubMed  Google Scholar 

  77. Hegazy R, Mansour D, Salama A, Hassan A, Saleh D (2021) Exposure to intranasal chromium triggers dose and time-dependent behavioral and neurotoxicological defects in rats. Ecotoxicol Environ Saf 216:112220. https://doi.org/10.1016/j.ecoenv.2021.112220

    Article  CAS  PubMed  Google Scholar 

  78. Shaw P, Mondal P, Bandyopadhyay A, Chattopadhyay A (2020) Environmentally relevant concentration of chromium induces nuclear deformities in erythrocytes and alters the expression of stress-responsive and apoptotic genes in brain of adult zebrafish. Sci Total Environ 703:135622. https://doi.org/10.1016/j.scitotenv.2019.135622

    Article  CAS  PubMed  Google Scholar 

  79. Sarıca ZS, Eren M, Senturk M (2019) Effect of boron on the potassium dichromate induced oxidative damage in brain tissue of sprague dawley rats. Pak J Zool 51. https://doi.org/10.17582/journal.pjz/2019.51.5.1905.1910

  80. Abu Zeid EH, Hussein MMA, Ali H (2018) Ascorbic acid protects male rat brain from oral potassium dichromate-induced oxdative DNA damage and apoptotic changes: the expression patterns of caspase-3, P 53, Bax, and Bcl-2 genes. Environ Sci Pollut Res Int 25(13):13056–13066. https://doi.org/10.1007/s11356-018-1546-9

    Article  CAS  PubMed  Google Scholar 

  81. Iztleuov Y, Abilov T, Zhanabayeva G, Ismailova I, Iztleuov M (2018) Protective effect of sodium tetraborate on chromium-induced brain damage in rats. Biomed Pharmacol J 11:227–236. https://doi.org/10.13005/bpj/1367

  82. Singh P, Chowdhuri DK (2018) Modulation of sestrin confers protection to Cr(VI) induced neuronal cell death in Drosophila melanogaster. Chemosphere 191:302–314. https://doi.org/10.1016/j.chemosphere.2017.10.037

    Article  CAS  PubMed  Google Scholar 

  83. Fahmy A (2017) A histological study on the possible ameliorating effect of selenium on chromium (VI) induced neurotoxicity in the adult male Guinea pig cerebellar cortex. J Am Sci 13(5):8–17. https://doi.org/10.7537/marsjas130517.02

    Article  Google Scholar 

  84. Fatima R, Akhtar K, Hossain MM, Ahmad R (2017) Chromium oxide nanoparticle-induced biochemical and histopathological alterations in the kidneys and brain of Wistar rats. Toxicol Ind Health 33(12):911–921. https://doi.org/10.1177/0748233717735266

    Article  CAS  PubMed  Google Scholar 

  85. Mahmoud AM, Abd El-Twab SM (2017) Caffeic acid phenethyl ester protects the brain against hexavalent chromium toxicity by enhancing endogenous antioxidants and modulating the JAK/STAT signaling pathway. Biomed Pharmacother 91:303–311. https://doi.org/10.1016/j.biopha.2017.04.073

    Article  CAS  PubMed  Google Scholar 

  86. García-Niño WR, Zatarain-Barrón ZL, Hernández-Pando R, Vega-García CC, Tapia E, Pedraza-Chaverri J (2015) Oxidative stress markers and histological analysis in diverse organs from rats treated with a hepatotoxic dose of Cr(VI): effect of curcumin. Biol Trace Elem Res 167(1):130–145. https://doi.org/10.1007/s12011-015-0283-x

    Article  CAS  Google Scholar 

  87. Soudani N, Troudi A, Amara IB, Bouaziz H, Boudawara T, Zeghal N (2012) Ameliorating effect of selenium on chromium (VI)-induced oxidative damage in the brain of adult rats. J Physiol Biochem 68(3):397–409. https://doi.org/10.1007/s13105-012-0152-4

    Article  CAS  PubMed  Google Scholar 

  88. Nudler SI, Quinteros FA, Miler EA, Cabilla JP, Ronchetti SA, Duvilanski BH (2009) Chromium VI administration induces oxidative stress in hypothalamus and anterior pituitary gland from male rats. Toxicol Lett 185(3):187–192. https://doi.org/10.1016/j.toxlet.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  89. Quinteros FA, Poliandri AH, Machiavelli LI, Cabilla JP, Duvilanski BH (2007) In vivo and in vitro effects of chromium VI on anterior pituitary hormone release and cell viability. Toxicol Appl Pharmacol 218(1):79–87. https://doi.org/10.1016/j.taap.2006.10.017

    Article  CAS  PubMed  Google Scholar 

  90. Bagchi D, Balmoori J, Bagchi M, Ye X, Williams CB, Stohs SJ (2002) Comparative effects of TCDD, endrin, naphthalene and chromium (VI) on oxidative stress and tissue damage in the liver and brain tissues of mice. Toxicology 175(1–3):73–82. https://doi.org/10.1016/S0300-483X(02)00062-8

    Article  CAS  PubMed  Google Scholar 

  91. Travacio M, María Polo J, Llesuy S (2000) Chromium(VI) induces oxidative stress in the mouse brain. Toxicology 150(1–3):137–146. https://doi.org/10.1016/s0300-483x(00)00254-7

    Article  CAS  PubMed  Google Scholar 

  92. Parent ME, Turner MC, Lavoué J, Richard H, Figuerola J, Kincl L, Richardson L, Benke G, Blettner M, Fleming S, Hours M, Krewski D, McLean D, Sadetzki S, Schlaefer K, Schlehofer B, Schüz J, Siemiatycki J, van Tongeren M, Cardis E (2017) Lifetime occupational exposure to metals and welding fumes, and risk of glioma: a 7-country population-based case-control study. Environ Health 16(1):90. https://doi.org/10.1186/s12940-017-0300-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gibb HJ, Lees PS, Wang J, Grace O’Leary K (2015) Extended followup of a cohort of chromium production workers. Am J Ind Med 58(8):905–913. https://doi.org/10.1002/ajim.22479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huvinen M, Pukkala E (2013) Cancer incidence among Finnish ferrochromium and stainless steel production workers in 1967–2011: a cohort study. BMJ Open 3(11):e003819. https://doi.org/10.1136/bmjopen-2013-003819

    Article  PubMed  PubMed Central  Google Scholar 

  95. Marsh GM, Youk AO, Buchanich JM, Xu H, Downing S, Kennedy KJ, Esmen NA, Hancock RP, Lacey SE, Fleissner ML (2013) Long-term health experience of jet engine manufacturing workers: VI: incidence of malignant central nervous system neoplasms in relation to estimated workplace exposures. J Occup Environ Med 55(6):654–675. https://doi.org/10.1097/JOM.0b013e3182749c4a

    Article  CAS  PubMed  Google Scholar 

  96. Lipworth L, Sonderman JS, Mumma MT, Tarone RE, Marano DE, Boice JD Jr, McLaughlin JK (2011) Cancer mortality among aircraft manufacturing workers: an extended follow-up. J Occup Environ Med 53(9):992–1007. https://doi.org/10.1097/JOM.0b013e31822e0940

    Article  CAS  PubMed  Google Scholar 

  97. Koh DH, Kim TW, Jang SH, Ryu HW (2011) Cancer mortality and incidence in cement industry workers in Korea. Saf Health Work 2(3):243–249. https://doi.org/10.5491/SHAW.2011.2.3.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hara T, Hoshuyama T, Takahashi K, Delgermaa V, Sorahan T (2010) Cancer risk among Japanese chromium platers, 1976–2003. Scand J Work Environ Health 36(3):216–221. https://doi.org/10.5271/sjweh.2889

    Article  PubMed  Google Scholar 

  99. Pan SY, Ugnat AM, Mao Y (2005) Canadian cancer registries epidemiology research group. Occupational risk factors for brain cancer in Canada. J Occup Environ Med 47(7):704–17. https://doi.org/10.1097/01.jom.0000165747.95801.c5

  100. Kitamura F, Yokoyama K, Araki S, Nishikitani M, Choi JW, Yum YT, Park HC, Park SH, Sato H (2003) Increase of olfactory threshold in plating factory workers exposed to chromium in Korea. Ind Health 41(3):279–285. https://doi.org/10.2486/indhealth.41.279

    Article  CAS  PubMed  Google Scholar 

  101. Wesseling C, Pukkala E, Neuvonen K, Kauppinen T, Boffetta P, Partanen T (2002) Cancer of the brain and nervous system and occupational exposures in Finnish women. J Occup Environ Med 44(7):663–668. https://doi.org/10.1097/00043764-200207000-00013

    Article  CAS  PubMed  Google Scholar 

  102. Knutsson A, Damber L, Järvholm B (2000) Cancers in concrete workers: results of a cohort study of 33,668 workers. Occup Environ Med 57(4):264–267. https://doi.org/10.1136/oem.57.4.264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Montanaro F, Ceppi M, Demers PA, Puntoni R, Bonassi S (1997) Mortality in a cohort of tannery workers. Occup Environ Med 54(8):588–591. https://doi.org/10.1136/oem.54.8.588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Danielsen TE, Langård S, Andersen A (1996) Incidence of cancer among Norwegian boiler welders. Occup Environ Med 53(4):231–234. https://doi.org/10.1136/oem.53.4.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Meecham HM, Humphrey P (1991) Industrial exposure to cobalt causing optic atrophy and nerve deafness: a case report. J Neurol Neurosurg Psychiatry 54(4):374–375. https://doi.org/10.1136/jnnp.54.4.374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Becker N, Chang-Claude J, Frentzel-Beyme R (1991) Risk of cancer for arc welders in the Federal Republic of Germany: results of a second follow up (1983–8). Br J Ind Med 48(10):675–683. https://doi.org/10.1136/oem.48.10.675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jordan C, Whitman RD, Harbut M, Tanner B (1990) Memory deficits in workers suffering from hard metal disease. Toxicol Lett 54(2–3):241–243. https://doi.org/10.1016/0378-4274(90)90190-W

    Article  CAS  PubMed  Google Scholar 

  108. Moulin JJ, Portefaix P, Wild P, Mur JM, Smagghe G, Mantout B (1990) Mortality study among workers producing ferroalloys and stainless steel in France. Br J Ind Med 47(8):537–543. https://doi.org/10.1136/oem.47.8.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yan BW, Bini SA (2021) Neurologic dysfunction associated with mechanically assisted crevice corrosion and elevated cobalt ion levels after total hip arthroplasty. Arthroplast Today 11:217–221. https://doi.org/10.1016/j.artd.2021.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bridges RL, Cho CS, Beck MR, Gessner BD, Tower SS (2020) F-18 FDG PET brain imaging in symptomatic arthroprosthetic cobaltism. Eur J Nucl Med Mol Imaging 47(8):1961–1970. https://doi.org/10.1007/s00259-019-04648-2

    Article  CAS  PubMed  Google Scholar 

  111. Biglia A, Morandi V, Monti S, Delvino P, Cavagna L, Montecucco C (2020) Cobalt hip prosthesis intoxication mimicking an autoimmune disease. Joint Bone Spine 87(6):652–654. https://doi.org/10.1016/j.jbspin.2020.05.014

    Article  CAS  PubMed  Google Scholar 

  112. Citak M, Gehrke T, Thieme O (2018) An extreme case of systemic metallosis after implantation of a hip prosthesis. Dtsch Arztebl Int 115(51–52):862. https://doi.org/10.3238/arztebl.2018.0862

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ho VM, Arac A, Shieh PB (2018) Hearing and vision loss in an older man. JAMA Neurol 75(11):1439–1440. https://doi.org/10.1001/jamaneurol.2018.1868

    Article  PubMed  Google Scholar 

  114. Lecoanet P, Blangis M, Garcia M, Legallois Y, Fabre T (2019) Chromium-cobalt intoxication with intense systemic complications following total hip revision after per-operative ceramic fracture. Case Rep Orthop 2019:4209796. https://doi.org/10.1155/2019/4209796

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zeynalov E, Cutrufello N, Pierce A (2018) Cobalt blues: a case report of cobalt intoxication associated obstrictive sleep apnea (OSA). Sleep 41:A415–A416. https://doi.org/10.1093/sleep/zsy063.1120

    Article  Google Scholar 

  116. Grillo LM, Nguyen HV, Tsang SH, Hood DC, Odel JG (2016) Cobalt-chromium metallosis with normal electroretinogram. J Neuroophthalmol 36(4):383–388. https://doi.org/10.1097/WNO.0000000000000400

    Article  PubMed Central  Google Scholar 

  117. Czekaj J, Ehlinger M, Rahme M, Bonnomet F (2016) Metallosis and cobalt—chrome intoxication after hip resurfacing arthroplasty. J Orthop Sci 21(3):389–394. https://doi.org/10.1016/j.jos.2015.06.001ù

    Article  PubMed  Google Scholar 

  118. Grant ML, Karp JK, Palladino M, Le N, Hall N, Herman JH (2016) Does therapeutic plasma exchange have a role in the treatment of prosthetic hip-associated cobalt toxicity? A case report and literature review. Transfusion 56(9):2368–2373. https://doi.org/10.1111/trf.13720

    Article  CAS  PubMed  Google Scholar 

  119. Woelber E, Van Citters DW, Steck T, Glass GA, Tower S (2016) Explant analysis from a patient exhibiting rapid acceleration of Parkinson disease symptoms and hypercobaltemia following metal-on-metal total hip arthroplasty: a case report. JBJS Case Connect 6(2):e45. https://doi.org/10.2106/JBJS.CC.15.00063

    Article  PubMed  Google Scholar 

  120. Briani C, Cacciavillani M, Nicolli A, Trevisan A, Gasparotti R (2015) ‘Snake eyes’ MRI sign: possible role of cobalt toxicity? J Neurol 262(2):471–472. https://doi.org/10.1007/s00415-014-7580-8

    Article  PubMed  Google Scholar 

  121. Griffiths J, Colvin A, Yates P, Meyerkort D, Kop A, Prosser G (2015) Extreme cobalt toxicity: bearing the brunt of a failed ceramic liner: a case report. JBJS Case Connect 5(4):e92. https://doi.org/10.2106/JBJS.CC.N.00242

    Article  PubMed  Google Scholar 

  122. Harris A, Johnson J, Mansuripur PK, Limbird R (2015) Cobalt toxicity after revision to a metal-on-polyethylene total hip arthroplasty for fracture of ceramic acetabular component. Arthroplast Today 1(4):89–91. https://doi.org/10.1016/j.artd.2015.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  123. Clark MJ, Prentice JR, Hoggard N, Paley MN, Hadjivassiliou M, Wilkinson JM (2014) Brain structure and function in patients after metal-on-metal hip resurfacing. AJNR Am J Neuroradiol 235(9):1753–1758. https://doi.org/10.3174/ajnr.A3922

    Article  Google Scholar 

  124. Dahms K, Sharkova Y, Heitland P, Pankuweit S, Schaefer JR (2014) Cobalt intoxication diagnosed with the help of Dr House. Lancet 383(9916):574. https://doi.org/10.1016/S0140-6736(14)60037-4

    Article  PubMed  Google Scholar 

  125. Apel W, Stark D, Stark A, O’Hagan S, Ling J (2013) Cobalt–chromium toxic retinopathy case study. Doc Ophthalmol 126:69–78. https://doi.org/10.1007/s10633-012-9356-8

    Article  Google Scholar 

  126. Ng SK, Ebneter A, Gilhotra JS (2013) Hip-implant related chorio-retinal cobalt toxicity. Indian J Ophthalmol 61(1):35–37. https://doi.org/10.4103/0301-4738.105053

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sotos JG, Tower SS (2013) Systemic disease after hip replacement: aeromedical implications of arthroprosthetic cobaltism. Aviat Space Environ Med 84:242–245. https://doi.org/10.3357/ASEM.3262.2013

    Article  PubMed  Google Scholar 

  128. Tower SS (2010) Arthroprosthetic cobaltism: neurological and cardiac manifestations in two patients with metal-on-metal arthroplasty: a case report. J Bone Joint Surg Am 92(17):2847–2851. https://doi.org/10.2106/JBJS.J.00125

    Article  PubMed  Google Scholar 

  129. Mao X, Wong AA, Crawford RW (2011) Cobalt toxicity—an emerging clinical problem in patients with metal-on-metal hip prostheses? Med J Aust 194(12):649–651. https://doi.org/10.5694/j.1326-5377.2011.tb03151.x

    Article  Google Scholar 

  130. Pelclova D, Sklensky M, Janicek P, Lach K (2012) Severe cobalt intoxication following hip replacement revision: clinical features and outcome. Clin Toxicol (Phila) 50(4):262–265. https://doi.org/10.3109/15563650.2012.670244

    Article  CAS  PubMed  Google Scholar 

  131. Ikeda T, Takahashi K, Kabata T, Sakagoshi D, Tomita K, Yamada M (2010) Polyneuropathy caused by cobalt-chromium metallosis after total hip replacement. Muscle Nerve 42(1):140–143. https://doi.org/10.1002/mus.21638

    Article  PubMed  Google Scholar 

  132. Oldenburg M, Wegner R, Baur X (2009) Severe cobalt intoxication due to prosthesis wear in repeated total hip arthroplasty. J Arthroplasty 24(5):825.e15–20. https://doi.org/10.1016/j.arth.2008.07.017

    Article  PubMed  Google Scholar 

  133. Rizzetti MC, Liberini P, Zarattini G, Catalani S, Pazzaglia U, Apostoli P, Padovani A (2009) Loss of sight and sound. Could it be the hip? Lancet 373(9668):1052. https://doi.org/10.1016/S0140-6736(09)60490-6

  134. Steens W, von Foerster G, Katzer A (2006) Severe cobalt poisoning with loss of sight after ceramic-metal pairing in a hip—a case report. Acta Orthop 77(5):830–832. https://doi.org/10.1080/17453670610013079

    Article  PubMed  Google Scholar 

  135. Feingold L, Savitz DA, John EM (1992) Use of a job-exposure matrix to evaluate parental occupation and childhood cancer. Cancer Causes Control 3(2):161–169. https://doi.org/10.1007/BF00051656

    Article  CAS  PubMed  Google Scholar 

  136. Apostoli P, Catalani S, Zaghini A, Mariotti A, Poliani PL, Vielmi V, Semeraro F, Duse S, Porzionato A, Macchi V, Padovani A, Rizzetti MC, De Caro R (2013) High doses of cobalt induce optic and auditory neuropathy. Exp Toxicol Pathol 65(6):719–727. https://doi.org/10.1016/j.etp.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  137. Ngala RA, Awe MA, Nsiah P (2018) The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. A case - control study. PLoS One 13(7):e0197977. https://doi.org/10.1371/journal.pone.0197977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vincent JB (2019) Effects of chromium supplementation on body composition, human and animal health, and insulin and glucose metabolism. Curr Opin Clin Nutr Metab Care 22(6):483–489. https://doi.org/10.1097/MCO.0000000000000604

    Article  CAS  PubMed  Google Scholar 

  139. Gad S (2014) Cobalt, in Encyclopedia of Toxicology (Third Edition) Reference Module in Biomedical Sciences, pp. 996–998. https://doi.org/10.1016/B978-0-12-386454-3.00832-0

  140. Kajiwara K, Sunaga K, Tsuda T, Sugaya A, Sugaya E, Kimura M (2008) Peony root extract upregulates transthyretin and phosphoglycerate mutase in mouse cobalt focus seizure. Biochem Biophys Res Commun 371(3):375–379. https://doi.org/10.1016/j.bbrc.2008.04.094

    Article  CAS  PubMed  Google Scholar 

  141. Michalska P, León R (2020) When it comes to an end: oxidative stress crosstalk with protein aggregation and neuroinflammation induce neurodegeneration. Antioxidants (Basel) 9(8):740. https://doi.org/10.3390/antiox9080740

    Article  CAS  PubMed  Google Scholar 

  142. Cai G, Zhu J, Shen C, Cui Y, Du J, Chen X (2012) The effects of cobalt on the development, oxidative stress, and apoptosis in zebrafish embryos. Biol Trace Elem Res 150(1–3):200–207. https://doi.org/10.1007/s12011-012-9506-6

    Article  CAS  PubMed  Google Scholar 

  143. Dashti A, Soodi M, Amani N (2016) Cr (VI) induced oxidative stress and toxicity in cultured cerebellar granule neurons at different stages of development and protective effect of Rosmarinic acid. Environ Toxicol 31(3):269–277. https://doi.org/10.1002/tox.22041

    Article  CAS  PubMed  Google Scholar 

  144. Dashti A, Soodi M, Amani N (2015) Evaluation of Cr (VI) induced neurotoxicity and Oxidative Stress in PC12 Cells. MJMS 18:55–65

    Google Scholar 

  145. Han S, Zhang M, Jeong YY, Margolis DJ, Cai Q (2021) The role of mitophagy in the regulation of mitochondrial energetic status in neurons. Autophagy 17(12):4182–4201. https://doi.org/10.1080/15548627.2021.1907167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rattay TW, Kluba T, Schöls L (2021) Chromium and cobalt intoxication mimicking mitochondriopathy. Neurol Res Pract 3(1):40. https://doi.org/10.1186/s42466-021-00141-0

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kikuchi S, Ninomiya T, Kohno T, Kojima T, Tatsumi H (2018) Cobalt inhibits motility of axonal mitochondria and induces axonal degeneration in cultured dorsal root ganglion cells of rat. Cell Biol Toxicol 34(2):93–107. https://doi.org/10.1007/s10565-017-9402-0

    Article  CAS  PubMed  Google Scholar 

  148. Liang Q, Zhang Y, Huang M, Xiao Y, Xiao F (2019) Role of mitochondrial damage in Cr(VI)-induced endoplasmic reticulum stress in L-02 hepatocytes. Mol Med Rep 19(2):1256–1265. https://doi.org/10.3892/mmr.2018.9704

    Article  CAS  PubMed  Google Scholar 

  149. Zhang Y, Xiao F, Liu X, Liu K, Zhou X, Zhong C (2017) Cr(VI) induces cytotoxicity in vitro through activation of ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction via the PI3K/Akt signaling pathway. Toxicol In Vitro 41:232–244. https://doi.org/10.1016/j.tiv.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  150. Yang D, Yang Q, Fu N, Li S, Han B, Liu Y, Tang Y, Guo X, Lv Z, Zhang Z (2021) Hexavalent chromium induced heart dysfunction via Sesn2-mediated impairment of mitochondrial function and energy supply. Chemosphere 264(Pt 2):128547. https://doi.org/10.1016/j.chemosphere.2020.128547

    Article  CAS  PubMed  Google Scholar 

  151. Kumar V, Mishra RK, Kaur G, Dutta D (2017) Cobalt and nickel impair DNA metabolism by the oxidative stress independent pathway. Metallomics 9(11):1596–1609. https://doi.org/10.1039/C7MT00231A

    Article  CAS  PubMed  Google Scholar 

  152. Hu G, Li P, Cui X, Li Y, Zhang J, Zhai X, Yu S, Tang S, Zhao Z, Wang J, Jia G (2018) Cr(VI)-induced methylation and down-regulation of DNA repair genes and its association with markers of genetic damage in workers and 16HBE cells. Environ Pollut 238:833–843. https://doi.org/10.1016/j.envpol.2018.03.046

    Article  CAS  PubMed  Google Scholar 

  153. Wang Y, Wu W, Yao C, Lou J, Chen R, Jin L, Wu N, Gao M, Song P, Tan Y, Liu K (2016) Elevated tissue Cr levels, increased plasma oxidative markers, and global hypomethylation of blood DNA in male Sprague-Dawley rats exposed to potassium dichromate in drinking water. Environ Toxicol 31(9):1080–1090. https://doi.org/10.1002/tox.22117

    Article  CAS  PubMed  Google Scholar 

  154. Chen QY, Murphy A, Sun H, Costa M (2019) Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicol Appl Pharmacol 377:114636. https://doi.org/10.1016/j.taap.2019.114636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Díez-Tercero L, Delgado LM, Bosch-Rué E, Perez RA (2021) Evaluation of the immunomodulatory effects of cobalt, copper and magnesium ions in a pro inflammatory environment. Sci Rep 11(1):11707. https://doi.org/10.1038/s41598-021-91070-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hegazy R, Salama A, Mansour D, Hassan A (2016) renoprotective effect of lactoferrin against chromium-induced acute kidney injury in rats: involvement of IL-18 and IGF-1 inhibition. PLoS One 11(3):e0151486. https://doi.org/10.1371/journal.pone.0151486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Alghamdi NJ, Balaraman L, Emhoff KA, Salem AMH, Wei R, Zhou A, Boyd WC (2019) Cobalt(II) diphenylazodioxide complexes induce apoptosis in SK-HEP-1 cells. ACS Omega 4(11):14503–14510. https://doi.org/10.1021/acsomega.9b01684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yong J, von Bremen J, Groeger S, Ruiz-Heiland G, Ruf S (2021) Hypoxia-inducible factor 1-alpha acts as a bridge factor for crosstalk between ERK1/2 and caspases in hypoxia-induced apoptosis of cementoblasts. J Cell Mol Med 25(20):9710–9723. https://doi.org/10.1111/jcmm.16920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yang SJ, Pyen J, Lee I, Lee H, Kim Y, Kim T (2004) Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase 1/2 activation in rat C6 glioma cells. J Biochem Mol Biol 37(4):480–486. https://doi.org/10.5483/BMBRep.2004.37.4.480

    Article  CAS  PubMed  Google Scholar 

  160. Cheng BC, Chen JT, Yang ST, Chio CC, Liu SH, Chen RM (2017) Cobalt chloride treatment induces autophagic apoptosis in human glioma cells via a p53-dependent pathway. Int J Oncol 50(3):964–974. https://doi.org/10.3892/ijo.2017.3861

    Article  CAS  PubMed  Google Scholar 

  161. Lee YW, Cherng YG, Yang ST, Liu SH, Chen TL, Chen RM (2021) Hypoxia induced by cobalt chloride triggers autophagic apoptosis of human and mouse drug-resistant glioblastoma cells through targeting the PI3K-AKT-mTOR signaling pathway. Oxid Med Cell Longev 2021:5558618. https://doi.org/10.1155/2021/5558618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Catelas I, Petit A, Vali H, Fragiskatos C, Meilleur R, Zukor DJ, Antoniou J, Huk OL (2005) Quantitative analysis of macrophage apoptosis vs. necrosis induced by cobalt and chromium ions in vitro. Biomaterials 26(15):2441–53. https://doi.org/10.1016/j.biomaterials.2004.08.004

  163. Huk OL, Catelas I, Mwale F, Antoniou J, Zukor DJ, Petit A (2004) Induction of apoptosis and necrosis by metal ions in vitro. J Arthroplasty 19(8 Suppl 3):84–87. https://doi.org/10.1016/j.arth.2004.09.011

    Article  PubMed  Google Scholar 

  164. Petit A, Mwale F, Zukor DJ, Catelas I, Antoniou J, Huk OL (2004) Effect of cobalt and chromium ions on bcl-2, bax, caspase-3, and caspase-8 expression in human U937 macrophages. Biomaterials 25(11):2013–2018. https://doi.org/10.1016/j.biomaterials.2003.08.040

    Article  CAS  PubMed  Google Scholar 

  165. Sanyal J, Ahmed SS, Ng HK, Naiya T, Ghosh E, Banerjee TK, Lakshmi J, Guha G, Rao VR (2016) Metallomic biomarkers in cerebrospinal fluid and serum in patients with Parkinson’s disease in Indian population. Sci Rep 6:35097. https://doi.org/10.1038/srep35097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Alimonti A, Ristori G, Giubilei F, Stazi MA, Pino A, Visconti A, Brescianini S, Monti MS, Forte G, Stanzione P, Bocca B, Bomboi G, D’Ippolito C, Annibali V, Salvetti M, Sancesario G (2007) Serum chemical elements and oxidative status in Alzheimer’s disease, Parkinson disease and multiple sclerosis. Neurotoxicology 28:450–456. https://doi.org/10.1016/j.neuro.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  167. Aguilar MV, Jiménez-Jiménez FJ, Molina JA, Meseguer I, Mateos-Vega CJ, González-Muñoz MJ, de Bustos F, Gómez-Escalonilla C, Ort-Pareja M, Zurdo M, Martínez-Para MC (1998) Cerebrospinal fluid selenium and chromium levels in patients with Parkinson’s disease. J Neural Transm (Vienna) 105(10–12):1245–1251. https://doi.org/10.1007/s007020050127

    Article  CAS  PubMed  Google Scholar 

  168. Forte G, Alimonti A, Pino A, Stanzione P, Brescianini S, Brusa L, Sancesario G, Violante N, Bocca B (2005) Metals and oxidative stress in patients with Parkinson’s disease. Ann Ist Super Sanita 41(2):189–195

    CAS  PubMed  Google Scholar 

  169. Gellein K, Syversen T, Steinnes E, Nilsen TI, Dahl OP, Mitrovic S, Duraj D, Flaten TP (2008) Trace elements in serum from patients with Parkinson’s disease—a prospective case-control study: the Nord-Trøndelag Health Study (HUNT). Brain Res 1219:111–115. https://doi.org/10.1016/j.brainres.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  170. Ahmed SS, Santosh W (2010) Metallomic profiling and linkage map analysis of early Parkinson’s disease: a new insight to aluminum marker for the possible diagnosis. PLoS One 5(6):e11252. https://doi.org/10.1371/journal.pone.0011252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Stefano F, Cinzia N, Marco P, Marco G, Rita G, Augusto F, Rosita G (2016) Hair microelement profile as a prognostic tool in Parkinson’s disease. Toxics 4(4):27. https://doi.org/10.3390/toxics4040027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Maass F, Michalke B, Leha A, Boerger M, Zerr I, Koch JC, Tönges L, Bähr M, Lingor P (2018) Elemental fingerprint as a cerebrospinal fluid biomarker for the diagnosis of Parkinson’s disease. J Neurochem 145(4):342–351. https://doi.org/10.1111/jnc.14316

    Article  CAS  PubMed  Google Scholar 

  173. de Oliveira M, Gianeti TMR, da Rocha FCG, Lisboa-Filho PN, Piacenti-Silva M (2020) A preliminary study of the concentration of metallic elements in the blood of patients with multiple sclerosis as measured by ICP-MS. Sci Rep 10(1):13112. https://doi.org/10.1038/s41598-020-69979-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Visconti A, Cotichini R, Cannoni S, Bocca B, Forte G, Ghazaryan A, Santucci S, D’Ippolito C, Stazi MA, Salvetti M, Alimonti A, Ristori G (2005) Concentration of elements in serum of patients affected by multiple sclerosis with first demyelinating episode: a six-month longitudinal follow-up study. Ann Ist Super Sanita 41(2):217–222

    CAS  PubMed  Google Scholar 

  175. Forte G, Visconti A, Santucci S, Ghazaryan A, Figà-Talamanca L, Cannoni S, Bocca B, Pino A, Violante N, Alimonti A, Salvetti M, Ristori G (2005) Quantification of chemical elements in blood of patients affected by multiple sclerosis. Ann Ist Super Sanita 41(2):213–216

    CAS  PubMed  Google Scholar 

  176. Janghorbani M, Shaygannejad V, Hakimdavood M, Salari M (2017) Trace elements in serum samples of patients with multiple sclerosis. AJH 4:145–154. https://doi.org/10.30958/ajh.4-2-3

  177. Tamburo E, Varrica D, Dongarrà G, Grimaldi LM (2015) Trace elements in scalp hair samples from patients with relapsing-remitting multiple sclerosis. PLoS One 10(4):e0122142. https://doi.org/10.1371/journal.pone.0122142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Babić Leko M, Jurasović J, Nikolac Perković M, Španić E, Sekovanić A, Orct T, Lukinović Škudar V, Bačić Baronica K, Kiđemet-Piskač S, Vogrinc Ž, Pivac N, Borovečki F, Hof PR, Šimić G (2021) The association of essential metals with APOE genotype in Alzheimer’s disease. J Alzheimers Dis 82(2):661–672. https://doi.org/10.3233/JAD-210158

    Article  CAS  PubMed  Google Scholar 

  179. Strumylaite L, Kregzdyte R, Kucikiene O, Baranauskiene D, Simakauskiene V, Naginiene R, Damuleviciene G, Lesauskaite V, Zemaitiene R (2022) Alzheimer’s disease association with metals and metalloids concentration in blood and urine. Int J Environ Res Public Health 19(12):7309. https://doi.org/10.3390/ijerph19127309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Banerjee G, Forsgard N, Ambler G, Keshavan A, Paterson RW, Foiani MS, Toombs J, Heslegrave A, Thompson EJ, Lunn MP, Fox NC, Zetterberg H, Schott JM, Werring DJ (2022) Cerebrospinal fluid metallomics in cerebral amyloid angiopathy: an exploratory analysis. J Neurol 269(3):1470–1475. https://doi.org/10.1007/s00415-021-10711-6

    Article  CAS  PubMed  Google Scholar 

  181. Baum L, Chan IH, Cheung SK, Goggins WB, Mok V, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Zee BC, Cheng W, Chan MH, Szeto S, Lui V, Tsoh J, Bush AI, Lam CW, Kwok T (2010) Serum zinc is decreased in Alzheimer’s disease and serum arsenic correlates positively with cognitive ability. Biometals 23(1):173–179. https://doi.org/10.1007/s10534-009-9277-5

    Article  CAS  PubMed  Google Scholar 

  182. Paglia G, Miedico O, Cristofano A, Vitale M, Angiolillo A, Chiaravalle AE, Corso G, Di Costanzo A (2016) Distinctive pattern of serum elements during the progression of Alzheimer’s disease. Sci Rep 6:22769. https://doi.org/10.1038/srep22769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Smorgon C, Mari E, Atti AR, Dalla Nora E, Zamboni PF, Calzoni F, Passaro A, Fellin R (2004) Trace elements and cognitive impairment: an elderly cohort study. Arch Gerontol Geriatr Suppl 9:393–402. https://doi.org/10.1016/j.archger.2004.04.050

    Article  CAS  Google Scholar 

  184. González-Domínguez R, García-Barrera T, Gómez-Ariza JL (2014) Characterization of metal profiles in serum during the progression of Alzheimer’s disease. Metallomics 6(2):292–300. https://doi.org/10.1039/C3MT00301A

    Article  PubMed  Google Scholar 

  185. Bocca B, Alimonti A, Bomboi G, Giubilei F, Forte G (2006) Alterations in the level of trace metals in Alzheimers disease. TE 23:270–276. https://doi.org/10.5414/TEP23270

  186. Gerhardsson L, Blennow K, Lundh T, Londos E, Minthon L (2009) Concentrations of metals, beta-amyloid and tau-markers in cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 28(1):88–94. https://doi.org/10.1159/000233353

    Article  CAS  PubMed  Google Scholar 

  187. Bocca B, Forte G, Petrucci F, Pino A, Marchione F, Bomboi G, Senofonte O, Giubilei F, Alimonti A (2005) Monitoring of chemical elements and oxidative damage in patients affected by Alzheimer’s disease. Ann Ist Super Sanita 41(2):197–203

    CAS  PubMed  Google Scholar 

  188. Lavanya RD, Reddy BS, Abdul Sattar S, Rao ADP (2021) Trace element imbalances in blood serum of Alzheimer’s disease patients. Spectrosc Lett 54:458–471. https://doi.org/10.1080/00387010.2021.1941124

    Article  CAS  Google Scholar 

  189. Stoker TB (2020) Clinical aspects and in vitro modelling of GBA1 variant-associated Parkinson’s disease. https://doi.org/10.17863/CAM.49065

  190. Jayaramayya K, Iyer M, Venkatesan D, Balasubramanian V, Narayanasamy A, Subramaniam MD, Cho SG, Vellingiri B (2020) Unraveling correlative roles of dopamine transporter (DAT) and Parkin in Parkinson’s disease (PD)—a road to discovery? Brain Res Bull 157:169–179. https://doi.org/10.1016/j.brainresbull.2020.02.001

    Article  CAS  PubMed  Google Scholar 

  191. Bisaglia M, Tessari I, Mammi S, Bubacco L (2009) Interaction between alpha-synuclein and metal ions, still looking for a role in the pathogenesis of Parkinson’s disease. Neuromolecular Med 11(4):239–251. https://doi.org/10.1007/s12017-009-8082-1

    Article  CAS  PubMed  Google Scholar 

  192. Lowe R, Pountney DL, Jensen PH, Gai WP, Voelcker NH (2004) Calcium(II) selectively induces alpha-synuclein annular oligomers via interaction with the C-terminal domain. Protein Sci 13(12):3245–3252. https://doi.org/10.1110/ps.04879704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wongkongkathep P, Han JY, Choi TS, Yin S, Kim HI, Loo JA (2018) Native top-down mass spectrometry and ion mobility MS for characterizing the cobalt and manganese metal binding of α-synuclein protein. J Am Soc Mass Spectrom 29(9):1870–1880. https://doi.org/10.1007/s13361-018-2002-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276(47):44284–96. https://doi.org/10.1074/jbc.M105343200

    Article  CAS  PubMed  Google Scholar 

  195. Vellingiri B, Suriyanarayanan A, Abraham KS, Venkatesan D, Iyer M, Raj N, Gopalakrishnan AV (2022) Influence of heavy metals in Parkinson’s disease: an overview. J Neurol 269(11):5798–5811. https://doi.org/10.1007/s00415-022-11282-w

    Article  CAS  PubMed  Google Scholar 

  196. Holland SL, Avery SV (2011) Chromate toxicity and the role of sulfur. Metallomics 3(11):1119–1123. https://doi.org/10.1039/c1mt00059d

    Article  CAS  PubMed  Google Scholar 

  197. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101(26):9843–9848. https://doi.org/10.1073/pnas.0403495101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Götz ME, Double K, Gerlach M, Youdim MB, Riederer P (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann NY Acad Sci 1012:193–208. https://doi.org/10.1196/annals.1306.017

    Article  CAS  PubMed  Google Scholar 

  199. Zhao HW, Lin J, Wang XB, Cheng X, Wang JY, Hu BL, Zhang Y, Zhang X, Zhu JH (2013) Assessing plasma levels of selenium, copper, iron and zinc in patients of Parkinson’s disease. PLoS One 8(12):e83060. https://doi.org/10.1371/journal.pone.0083060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ogunrin OA, Sanya EO, Komolafe MA, Osubor CC (2012) 1.116 Trace metals in patients with Parkinson’s disease: a multi-center case-control study in Nigerian patients. Parkinsonism Relat Disord 18:S39. https://doi.org/10.1016/S1353-8020(11)70230-9

  201. Takuya H, Kazumi I, Hiroki H (2001) Multielement Correlation analysis of major-to-trace elements in human blood serum for medical diagnosis as studied by ICP-AES and ICP-MS. Anal Sci 17:979–982. https://doi.org/10.14891/analscisp.17icas.0.i979.0

  202. Kingwell E, Marriott JJ, Jetté N, Pringsheim T, Makhani N, Morrow SA, Fisk JD, Evans C, Béland SG, Kulaga S, Dykeman J, Wolfson C, Koch MW, Marrie RA (2013) Incidence and prevalence of multiple sclerosis in Europe: a systematic review. BMC Neurol 13:128. https://doi.org/10.1186/1471-2377-13-128

    Article  PubMed  PubMed Central  Google Scholar 

  203. Napier MD, Poole C, Satten GA, Ashley-Koch A, Marrie RA, Williamson DM (2016) Heavy metals, organic solvents, and multiple sclerosis: an exploratory look at gene-environment interactions. Arch Environ Occup Health 71(1):26–34. https://doi.org/10.1080/19338244.2014.937381

    Article  CAS  PubMed  Google Scholar 

  204. Nichols E, Steinmetz JD, Vollset SE et al (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health 7:e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8

    Article  Google Scholar 

  205. Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D (2012) Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012:731526. https://doi.org/10.1155/2012/731526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wallin C, Sholts SB, Österlund N, Luo J, Jarvet J, Roos PM, Ilag L, Gräslund A, Wärmländer SKTS (2017) Alzheimer’s disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci Rep 7(1):14423. https://doi.org/10.1038/s41598-017-13759-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wisessaowapak C, Visitnonthachai D, Watcharasit P, Satayavivad J (2021) Prolonged arsenic exposure increases tau phosphorylation in differentiated SH-SY5Y cells: the contribution of GSK3 and ERK1/2. Environ Toxicol Pharmacol 84:103626. https://doi.org/10.1016/j.etap.2021.103626

    Article  CAS  PubMed  Google Scholar 

  208. Babić Leko M, Mihelčić M, Jurasović J, Nikolac Perković M, Španić E, Sekovanić A, Orct T, Zubčić K, Langer Horvat L, Pleić N, Kiđemet-Piskač S, Vogrinc Ž, Pivac N, Diana A, Borovečki F, Hof PR, Šimić G (2022) Heavy metals and essential metals are associated with cerebrospinal fluid biomarkers of Alzheimer’s disease. Int J Mol Sci 24(1):467. https://doi.org/10.3390/ijms24010467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Strozyk D, Launer LJ, Adlard PA, Cherny RA, Tsatsanis A, Volitakis I, Blennow K, Petrovitch H, White LR, Bush AI (2007) Zinc and copper modulate Alzheimer Abeta levels in human cerebrospinal fluid. Neurobiol Aging 30(7):1069–1077. https://doi.org/10.1016/j.neurobiolaging.2007.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gerhardsson L, Lundh T, Londos E, Minthon L (2011) Cerebrospinal fluid/plasma quotients of essential and non-essential metals in patients with Alzheimer’s disease. J Neural Transm (Vienna) 118(6):957–962. https://doi.org/10.1007/s00702-011-0605-x

    Article  CAS  PubMed  Google Scholar 

  211. Ghori N-H, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16:1807–1828. https://doi.org/10.1007/s13762-019-02215-8

    Article  CAS  Google Scholar 

  212. Christova TY, Duridanova DB, Setchenska MS (2002) Enhanced heme oxygenase activity increases the antioxidant defense capacity of guinea pig liver upon acute cobalt chloride loading: comparison with rat liver. Comp Biochem Physiol C Toxicol Pharmacol 131(2):177–184. https://doi.org/10.1016/s1532-0456(01)00287-3

    Article  PubMed  Google Scholar 

  213. Seghizzi P, D’Adda F, Borleri D, Barbic F, Mosconi G (1994) Cobalt myocardiopathy.A critical review of literature. Sci Total Environ 150:105–109. https://doi.org/10.1016/0048-9697(94)90135-x

    Article  CAS  Google Scholar 

  214. Shaw P, Mondal P, Bandyopadhyay A, Chattopadhyay A (2019) Environmentally relevant concentration of chromium activates Nrf2 and alters transcription of related XME genes in liver of zebrafish. Chemosphere 214:35–46. https://doi.org/10.1016/j.chemosphere.2018.09.104

    Article  CAS  PubMed  Google Scholar 

  215. Li ZH, Li P, Randak T (2011) Evaluating the toxicity of environmental concentrations of waterborne chromium (VI) to a model teleost, Oncorhynchus mykiss: a comparative study of in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol 153(4):402–407. https://doi.org/10.1016/j.cbpc.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  216. Chaâbane M, Bejaoui S, Trabelsi W, Telahigue K, Chetoui I, Chalghaf M, Zeghal N, El Cafsi M, Soudani N (2020) The potential toxic effects of hexavalent chromium on oxidative stress biomarkers and fatty acids profile in soft tissues of Venus verrucosa. Ecotoxicol Environ Saf 196:110562. https://doi.org/10.1016/j.ecoenv.2020.110562

    Article  CAS  PubMed  Google Scholar 

  217. Ni X, Wan L, Liang P, Zheng R, Lin Z, Chen R, Pei M, Shen Y (2020) The acute toxic effects of hexavalent chromium on the liver of marine medaka (Oryzias melastigma). Comp Biochem Physiol C Toxicol Pharmacol 231:108734. https://doi.org/10.1016/j.cbpc.2020.108734

    Article  CAS  PubMed  Google Scholar 

  218. Kim JH, Kang JC (2017) Effects of dietary chromium exposure to rockfish, Sebastes schlegelii are ameliorated by ascorbic acid. Ecotoxicol Environ Saf 139:109–115. https://doi.org/10.1016/j.ecoenv.2017.01.029

    Article  CAS  PubMed  Google Scholar 

  219. Lee JW, Kim JH, Lee DC, Lim HJ, Kang JC (2022) Toxic effects on oxidative stress, neurotoxicity, stress, and immune responses in juvenile olive flounder, Paralichthys olivaceus, exposed to waterborne hexavalent chromium. Biology (Basel) 11(5):766. https://doi.org/10.3390/biology11050766

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DNA: writing—original draft; BB, BB, FR, CF, FCO: writing—review and editing; OEO and CNO: conceptualization and writing—review and editing.

Corresponding author

Correspondence to Orish E. Orisakwe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajibo, D.N., Orish, C.N., Ruggieri, F. et al. An Update Overview on Mechanistic Data and Biomarker Levels in Cobalt and Chromium-Induced Neurodegenerative Diseases. Biol Trace Elem Res (2023). https://doi.org/10.1007/s12011-023-03965-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-03965-w

Keywords

Navigation