Skip to main content
Log in

Exploring Dual-Substrate Cultivation Strategy of 1,3-Propanediol Production Using Klebsiella pneumoniae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

1,3-Propanediol (1,3-PDO) has numerous industrial applications in the synthesis of the monomer of the widely used fiber polytrimethylene terephthalate. In this work, the production of 1,3-PDO by Klebsiella pneumoniae is increased by dual-substrate cultivation and fed-batch fermentation. Experimental results indicate that the production of 1,3-PDO can be elevated to 16.09 g/L using a dual substrate ratio (of glucose to crude glycerol) of 1/30 and to 20.73 g/L using an optimized dual-substrate ratio of 1/20. Ultimately, the optimal dual-substrate feeding for a 5 L scale fed-batch fermenter that maximizes 1,3-PDO production (29.69 g/L) is determined. This production yield is better than that reported in most related studies. Eventually, the molecular weight and chemical structure of 1,3-PDO were obtained by FAB-MS, 1H-NMR, and 13C-NMR. Also, in demonstrating the effectiveness of the fermentation strategy in increasing the production and production yield of 1,3-PDO, experimental results indicate that the fermentation of 1,3-PDO is highly promising for commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeng, A. P., & Sabra, W. (2011). Microbial production of diols as platform chemicals: Recent progresses. Current Opinion in Biotechnology, 22(6), 749–757.

    Article  CAS  Google Scholar 

  2. Przystałowska, H., Zeyland, J., Kośmider, A., Szalata, M., Słomski, R., & Lipiński, D. (2015). 1,3-Propanediol production by Escherichia coli using genes from Citrobacter freundii atcc 8090. Acta Biochimica Polonica, 62(3), 589–597.

    Article  Google Scholar 

  3. Gungormusler-Yilmaz, M., Cicek, N., Levin, D. B., & Azbar, N. (2016). Cell immobilization for microbial production of 1,3-propanediol. Critical Reviews in Biotechnology, 36(3), 482–494.

    CAS  PubMed  Google Scholar 

  4. George, A. K. (2008). Synthetic methods for the preparation of 1,3-propanediol. CLEAN - Soil Air Water, 36, 648–651.

    Article  Google Scholar 

  5. Lama, S., Seol, E., and Park, S. (2017). Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-propanediol from glucose. Bioresource Technology, 245 (Pt B), 1542-1550.

  6. Dietz, D., & Zeng, A. P. (2014). Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess and Biosystems Engineering, 37, 225–333.

    Article  CAS  Google Scholar 

  7. Metsoviti, M., Zeng, A. P., Koutinas, A. A., & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. Journal of Biotechnology, 163(4), 408–418.

    Article  CAS  Google Scholar 

  8. Barbirato, F., & Bories, A. (1997). Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Research in Microbiology, 148(6), 475–484.

    Article  CAS  Google Scholar 

  9. Moon, C., Lee, C. H., Sang, B. I., & Um, Y. (2011). Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum. Bioresource Technology, 102(22), 10561–10568.

    Article  CAS  Google Scholar 

  10. Liu, J. Z., Xu, W., Chistoserdov, A., & Bajpai, R. K. (2016). Glycerol dehydratases: Biochemical structures, catalytic mechanisms, and industrial applications in 1,3-Propanediol production by naturally occurring and genetically engineered bacterial strains. Applied Biochemistry and Biotechnology, 179(6), 1073–1100.

    Article  CAS  Google Scholar 

  11. Ringel, A. K., Wilkens, E., Hortig, D., Willke, T., & Vorlop, K. D. (2012). An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations. Applied Microbiology and Biotechnology, 93(3), 1049–1056.

    Article  CAS  Google Scholar 

  12. Jiang, Y., Liu, W., Zou, H., Cheng, T., Tian, N., & Xian, M. (2014). Microbial production of short chain diols. Microbial Cell Factories, 13, 165.

    Article  Google Scholar 

  13. Talebian-Kiakalaieh, A., Amin, N. A. S., Najaafi, N., & Tarighi, S. (2018). A review on the catalytic acetalization of bio-renewable glycerol to fuel additives. Frontiers in Chemistry, 6, 573.

    Article  CAS  Google Scholar 

  14. Mitrea, L., Trif, M., Cătoi, A. F., & Vodnar, D. C. (2017). Utilization of biodiesel derived-glycerol for 1,3-PD and citric acid production. Microbial Cell Factories, 16, 190.

    Article  Google Scholar 

  15. Ayoub, M., & Abdullah, A. Z. (2012). Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable & Sustainable Energy Reviews, 16, 2671–2686.

    Article  CAS  Google Scholar 

  16. Yang, T. W., Rao, Z. M., Zhang, X., Xu, M. J., Xu, Z. H., & Yang, S. T. (2013). Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: Effects of co-substrates on 2,3-butanediol production. Applied Microbiology and Biotechnology, 97(17), 7651–7658.

    Article  CAS  Google Scholar 

  17. Mota, M. J., Lopes, R. P., Sousa, S., Gomes, A. M., Delgadillo, I., & Saraiva, J. A. (2018). Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol. Food Research International, 113, 424–432.

    Article  CAS  Google Scholar 

  18. Jalasutram, V., & Jetty, A. (2011). Optimization of 1, 3-Propanediol production by Klebsiella pneumoniae 141B using Taguchi methodology: Improvement in production by cofermentation studies. Research in Biotechnology, 2, 90–104.

    Google Scholar 

  19. Horng, Y. T., Chang, K. C., Chou, T. C., Yu, C. J., Chien, C. C., Wei, Y. H., & Soo, P. C. (2010). Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae. Journal of Industrial Microbiology & Biotechnology, 37(7), 707–716.

    Article  CAS  Google Scholar 

  20. Vivek, N., Pandey, A., & Binod, P. (2016). Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Bioresource Technology, 213, 222–230.

    Article  CAS  Google Scholar 

  21. Lüthi-Peng, Q., Dileme, F. B., & Puhan, Z. (2002). Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Applied Microbiology and Biotechnology, 59(2-3), 289–296.

    Article  Google Scholar 

  22. El-Ziney, M. G., Arneborg, N., Uyttendaele, M., Debevere, J., & Jakobsen, M. (1998). Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnology Letters, 20, 913–916.

    Article  CAS  Google Scholar 

  23. Xiu, Z. L., Chen, X., Sun, Y. Q., & Zhang, D. J. (2007). Stoichiometric analysis and experimental investigation of glycerol–glucose co-fermentation in Klebsiella pneumoniae under microaerobic conditions. Biochemical Engineering Journal, 33, 42–52.

    Article  CAS  Google Scholar 

  24. Lee, J., Lama, S., Kim, J. R., & Park, S. (2018). Production of 1,3-propanediol from glucose by recombinant Escherichia coli BL21(DE3). Biotechnology and Bioprocess Engineering, 23, 250–258.

    Article  CAS  Google Scholar 

  25. Kao, W. C., Lin, D. S., Cheng, C. L., Chen, B. Y., Lin, C. Y., & Chang, J. S. (2013). Enhancing butanol production with Clostridium pasteurianum CH4 using sequential glucose-glycerol addition and simultaneous dual-substrate cultivation strategies. Bioresource Technology, 135, 324–330.

    Article  CAS  Google Scholar 

  26. Biebl, H., Menzel, K., Zeng, A. P., & Deckwer, W. D. (1999). Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology, 52(3), 289–297.

    Article  CAS  Google Scholar 

  27. Keskin Gündoğdu, T., Deniz, İ., Çalışkan, G., Şahin, E. S., & Azbar, N. (2016). Experimental design methods for bioengineering applications. Critical Reviews in Biotechnology, 36(2), 368–388.

    Article  Google Scholar 

  28. Cheng, K. K., Liu, H. J., & Liu, D. H. (2005). Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnology Letters, 27(1), 19–22.

    Article  CAS  Google Scholar 

  29. Zhang, Y., Li, Y., Du, C., Liu, M., & Cao, Z. (2006). Inactivation of aldehyde dehydrogenase: A key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metabolic Engineering, 8(6), 578–586.

    Article  CAS  Google Scholar 

  30. Avci, F. G., Huccetogullari, D., & Azbar, N. (2014). The effects of cell recycling on the production of 1,3-propanediol by Klebsiella pneumoniae. Bioprocess and Biosystems Engineering, 37(3), 513–519.

    Article  CAS  Google Scholar 

  31. Kumar, V., & Park, S. (2018). Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnology Advances, 36(1), 150–167.

    Article  CAS  Google Scholar 

  32. Pflugmacher, U., & Gottschalk, G. (1994). Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Applied Microbiology and Biotechnology, 41, 313–316.

    Article  CAS  Google Scholar 

  33. Reimann, A., Biebl, H., & Deckwer, W. D. (1998). Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Applied Microbiology and Biotechnology, 49, 359–363.

    Article  CAS  Google Scholar 

  34. Chen, H., Fang, B., & Hu, Z. (2005). Optimization of process parameters for key enzymes accumulation of 1,3-propanediol production from Klebsiella pneumoniae. Biochemical Engineering Journal, 25, 47–53.

    Article  CAS  Google Scholar 

  35. Lin, R., Liu, H., Hao, J., Cheng, K., & Liu, D. (2005). Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition. Biotechnology Letters, 27(22), 1755–1759.

    Article  CAS  Google Scholar 

  36. Zhao, Y., Chen, N. G., & Yao, S. J. (2006). Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochemical Engineering Journal, 32, 93–99.

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of the Ministry of Science and Technology of the Republic of China, provided under grant numbers MOST 107-2221-E-155-023-MY3 and MOST 107-2218-E-155 -001.

Author information

Authors and Affiliations

Authors

Contributions

Prof. Yu-Hong Wei were responsible for the overall design and investigation. Wei-Chuan Chen and Chi-Ju Chuang were responsible for the experimental performances. Prof. Jo-Shu Chang, Prof. Li-Fen Wang, Prof. Po-Chi Soo, Prof. Ho-Shing Wu, and Prof. Shen-Long Tsai provided the concept of this study. All authors read and approve the final manuscript.

Corresponding author

Correspondence to Yu-Hong Wei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The presenting author of this manuscript in ACB 2019 is Dr. Wei-Chuan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WC., Chuang, CJ., Chang, JS. et al. Exploring Dual-Substrate Cultivation Strategy of 1,3-Propanediol Production Using Klebsiella pneumoniae. Appl Biochem Biotechnol 191, 346–359 (2020). https://doi.org/10.1007/s12010-019-03208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03208-6

Keywords

Navigation