Skip to main content
Log in

Production of 1,3-Propanediol from Glucose by Recombinant Escherichia coli BL21(DE3)

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A range of recombinant strains of Escherichia coli were developed to produce 1,3-propanediol (1,3-PDO), an important C3 diol, from glucose. Two modules, the glycerol-producing pathway converting dihydroxyacetone phosphate to glycerol and the 1,3-PDO-producing pathway converting glycerol to 1,3-PDO, were introduced into E. coli. In addition, to avoid oxidative assimilation of the produced glycerol, glycerol oxidative pathway was deleted. Furthermore, to enhance the carbon flow to the Embden- Meyerhof-Parnas pathway, the Entner-Doudoroff pathway was disrupted by deleting 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase. Finally, the acetate production pathway was removed to minimize the production of acetate, a major and toxic by-product. Flask experiments were carried out to examine the performance of the developed recombinant E. coli. The best strain could produce 1,3-PDO with a yield of 0.47 mol/mol glucose. Along with 1,3-PDO, glycerol was produced with a yield of 0.33 mol/mol glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jong, E. D, A. Higson, P. Walsh, and M. Wellisch (2011) Biobased chemicals-value added products from biorefineries, A report prepared for IEA Bioenergy-Task42.

    Google Scholar 

  2. Molel, E., H. Phillips, and A. Smith (2015) 1,3-Propanediol from crude glycerol. Senior Design Reports (CBE).

    Google Scholar 

  3. Liu, H., Y. Xu, Z. Zheng, and D. Liu (2010) 1,3-Propanediol and its copolymers: Research, development and industrialization. Biotechnol. J. 5: 1137–1148.

    Article  CAS  Google Scholar 

  4. Maervoet, V. E., M. De Mey, J. Beauprez, S. De Maeseneire, and W. K. Soetaert (2010) Enhancing the microbial conversion of glycerol to 1,3-propanediol using metabolic engineering. Org. Proc. Res. Dev. 15: 189–202.

    Article  Google Scholar 

  5. Ainala, S. K., S. Ashok, Y. Ko, and S. Park (2013) Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19. Appl. Microbiol. Biotechnol. 97: 5001–5011.

    Article  CAS  Google Scholar 

  6. Kumar, V., M. Sankaranarayanan, K. E. Jae, M. Durgapal, S. Ashok, Y. Ko, R. Sarkar, and S. Park (2012) Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase. Appl. Microbiol. Biotechnol. 96: 373–383.

    Article  CAS  Google Scholar 

  7. Zeng, A. P., A. Ross, H. Biebl, C. Tag, B. Günzel, and W. D. Deckwer (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44: 902–911

    Article  CAS  Google Scholar 

  8. Ahmed, H., O. Naouel, and B. Djilali (2012) 1,3-Propanediol production by Clostridium butyricum in various fed-batch feeding strategies. J. Biotechnol. Biomat. 2: 134.

    CAS  Google Scholar 

  9. Kubiak, P., K. Leja, K. Myszka, E. Celinska, M. Spychala, D. Szymanowska-Powalowska, K. Czaczyk, and W. Grajek (2012) Physiological predisposition of various Clostridium species to synthetize 1,3-propanediol from glycerol. Proc. Biochem. 47: 1308–1319.

    Article  CAS  Google Scholar 

  10. Wilkens, E., A. K. Ringel, D. Hortig, T. Willke, and K. D. Vorlop, (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl. Microbiol. Biotechnol. 93: 1057–1063.

    Article  CAS  Google Scholar 

  11. Chotani, G., T. Dodge, A. Hsu, M. Kumar, R. LaDuca, D. Trimbur, W. Weyler, and K. Sanford (2000) The commercial production of chemicals using pathway engineering. Biochim. Biophys. Acta 1543: 434–455.

    Article  CAS  Google Scholar 

  12. Nakamura, C. E. and G. M. Whited (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14: 454–459.

    Article  CAS  Google Scholar 

  13. Costenoble, R., H. Valadi, L. Gustafsson, C. Niklasson, and C. Johan Franzén (2000) Microaerobic glycerol formation in Saccharomyces cerevisiae. Yeast 16: 1483–1495.

    Article  CAS  Google Scholar 

  14. Bulthuis, B. A., A. A. Gatenby, S. L. Haynie, A. K. H. Hsu, and R. D. Lareau (2002) Method for the production of glycerol by recombinant organisms. US Patent 6,358,716.

    Google Scholar 

  15. Link, A. J., D. Phillips, and G. M. Church (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J. Bacteriol. 179: 6228–6237.

    Article  CAS  Google Scholar 

  16. Ashok, S., M. Sankaranarayanan, Y. Ko, K. E. Jae, S. K. Ainala, V. Kumar, and S. Park (2012) Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally. Biotechnol. Bioeng. 110: 511–524.

    Article  Google Scholar 

  17. Lama, S., E. Seol, and S. Park (2017) Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-Propanediol from glucose. Bioresour. Technol. 245: 1542–1550.

    Article  CAS  Google Scholar 

  18. Nakamura, C. E., A. A. Gatenby, A. K. H. Hsu, R. D. La Reau, S. L. Haynie, M. Diaz-Torres, D. E. Trimbur, G. M. Whited, V. Nargarajan, M. S. Payne, S. K. Picataggio, and R. V. Nair (2000) Method for the production of 1,3-Propanediol by microorganisms. US Patent 6,013,494.

    Google Scholar 

  19. Cameron, D. C., N. E. Altaras, M. L. Hoffman, and A. J. Shaw (1998) Metabolic engineering of propanediol pathways. Biotechnol. Progr. 14: 116–125.

    Article  CAS  Google Scholar 

  20. Sweet, G., C. Gandor, R. Voegele, N. Wittekindt, J. Beuerle, V. Truniger, E. C. Lin, and W. Boos (1990) Glycerol facilitator of Escherichia coli: Cloning of glpF and identification of the glpF product. J. Bacteriol. 172: 424–430.

    Article  CAS  Google Scholar 

  21. Jung, W. S., J. H. Kang, H. S. Chu, I. S. Choi, and K. M. Cho (2014) Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli. Metab. Eng. 23: 116–122.

    Article  CAS  Google Scholar 

  22. Kumar, V. and S. Park (2018) Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol. Adv. 36: 150–167.

    Article  CAS  Google Scholar 

  23. Jahreis, K., E. F. Pimentel-Schmitt, R. Brückner, and F. Titgemeyer (2008) Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol. Rev. 32: 891–907.

    Article  CAS  Google Scholar 

  24. Lengeler, J. W. (1993) Carbohydrate transport in bacteria under environmental conditions, a black box? Antonie Van Leeuwenhoek 63: 275–288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Rae Kim.

Additional information

Electronic Supplementary Material (ESM) The online version of this article (doi: 10.1007/s12257-018-0017-y) contains supplementary material, which is available to authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Lama, S., Kim, J.R. et al. Production of 1,3-Propanediol from Glucose by Recombinant Escherichia coli BL21(DE3). Biotechnol Bioproc E 23, 250–258 (2018). https://doi.org/10.1007/s12257-018-0017-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0017-y

Keywords

Navigation