Skip to main content
Log in

Penicillium janthinellum: a Source of Efficient and High Levels of β-Glucosidase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Penicillium janthinellum strain isolated from leaf litters of oak trees from montane alpine forests of Shivalik hills (India) produced high levels of β-glucosidase both during solid-state fermentation (796 units/gds) and shake flask cultures (65.3 units/ml). The peptide mass fingerprinting of the secretome showed a variety of glycosyl hydrolases. β-Glucosidase was purified and characterized to be a GH3 family member that had a molecular weight (M r) of 101 kDa and pI of 4.5. β-Glucosidase was optimally active at 60 °C at pH 5.0 but showed appreciable activity and thermostability under alkaline conditions (pH 9.0) also. β-Glucosidase activity was positively modulated in the presence of Mn2+ ions. The enzyme preferentially catalyzed the hydrolysis of p-nitrophenol-β-d-glucopyranoside (pNPG) but also recognized cellobiose as substrates. K m and V max for the hydrolysis of pNPG by β-glucosidase were calculated as 3.3 mM and 444 μmol min−1 mg protein−1. Purified β-glucosidase showed transglycosylation activity in the presence of methanol as an acceptor molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clark, J. H., Luque, R., & Matahru, A. S. (2012). Annual Review of Chemical and Biomolecular Engineering, 3, 183–207.

    Article  CAS  Google Scholar 

  2. Bhat, M., & Bhat, S. (1997). Biotechnology Advances, 15, 583–630.

    Article  CAS  Google Scholar 

  3. Saha, B. C., Freer, S. N., & Bothast, R. J. (1994). Applied and Environmental Microbiology, 60, 3774–3780.

    CAS  Google Scholar 

  4. Chen, M., Qin, Y., Liu, Z., Liu, K., Wang, F., & Qu, Y. (2011). Enzyme and Microbial Technology, 46, 444–449.

    Article  Google Scholar 

  5. Liu, G., Zhang, L., Wei, X., Zou, G., Qin, Y., Ma, L., Li, J., Zheng, H., Wang, S., Wang, C., Xun, L., Zhao, G., Zhao, Z., & Qu, Y. (2013). PLoS One, 8, 1–12.

    Google Scholar 

  6. Kaur, B., Oberoi, H. S., & Chadha, B. S. (2014). Bioresource Technology, 156, 100–107.

    Article  CAS  Google Scholar 

  7. Sharma, M., Soni, R., Nazir, A., Oberoi, H. S., & Chadha, B. S. (2010). Applied Biochemistry and Biotechnology, 163, 577–591.

    Article  Google Scholar 

  8. Kaur, B., Sharma, M., Soni, R., Oberoi, H. S., & Chadha, B. S. (2013). Applied Biochemistry and Biotechnology, 169, 393–407.

    Article  CAS  Google Scholar 

  9. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  10. Badhan, A. K., Chadha, B. S., Sonia, K. G., Saini, H. S., & Bhat, M. K. (2004). Enzyme and Microbial Technology, 35, 460–466.

    Article  CAS  Google Scholar 

  11. Nazir, A., Soni, R., Saini, H. S., Manhas, R. K., & Chadha, B. S. (2009). World Journal of Microbiology and Biotechnology, 25, 1189–1197.

    Article  CAS  Google Scholar 

  12. Badhan, A. K., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Bioresource Technology, 98, 504–510.

    Article  CAS  Google Scholar 

  13. Camassola, M., & Dhillon, A. J. (2007). Journal of Applied Microbiology, 103, 2196–2204.

    Article  CAS  Google Scholar 

  14. Ng, I., Li, C., Chan, P., Chir, J., Chen, P., Tong, C., Yu, S., & Ho, T. D. (2010). Bioresource Technology, 101, 1310–1317.

    Article  CAS  Google Scholar 

  15. Singhvi, M. S., Adsul, M. G., & Gokhale, D. V. (2011). Bioresource Technology, 102, 6569–6572.

    Article  CAS  Google Scholar 

  16. Sonia, K.G., Chadha, B.S., Badhan, A.K., Saini, H.S., Bhat, M.K. (2008). World Journal of Microbiology and Biotechnology, 24, 599–604.

  17. Kim, K., Brown, K. M., Harris, P. V., Langston, J., & Cherry, J. R. (2007). Journal of Proteome Research, 6, 4749–4757.

    Article  CAS  Google Scholar 

  18. Guais, O., Borderies, G., Pichereaux, C., Maestracci, M., Neugnot, V., Rossignol, M., et al. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 1659–1668.

    Article  CAS  Google Scholar 

  19. Gimbert, I. H., Margoet, A., Dolla, A., Jan, G., Molle, D., Lignon, S., et al. (2008). Biotechnology for Biofuels, 1, 18. doi:10.1186/1754-6834-1-18.

    Article  Google Scholar 

  20. Bhiri, F., Chaabouni, S. E., Limam, F., Ghrir, R., & Marzouki, N. (2008). Applied Biochemistry and Biotechnology, 149, 169–182.

    Article  CAS  Google Scholar 

  21. Jeya, M., Joo, A. R., Lee, K. M., Tiwari, M. K., & Kim, S. H. (2010). Applied Microbiology and Biotechnology, 86, 1473–1484.

    Article  CAS  Google Scholar 

  22. Ramani, G., Meera, B., Vanitha, C., Rao, M., & Gunasekaran, P. (2012). Applied Biochemistry and Biotechnology, 167, 959–972.

    Article  CAS  Google Scholar 

  23. Krogh, K. B., Harris, P. V., Olsen, C. L., Johansen, K. S., Hoper-Pedersen, J., & Borjesson, J. (2010). Applied Biochemistry and Biotechnology, 86, 143–54.

    CAS  Google Scholar 

  24. Park, A., Hong, J. H., Kim, J., & Yoon, J. (2012). Mycobiology, 40, 173–180.

    Article  CAS  Google Scholar 

  25. Geiger, G., Furrer, G., Funk, F., Brang, I. H., & Schulin, R. (1999). Journal of Enzyme Inhibition, 14, 365–379.

    Article  CAS  Google Scholar 

  26. Adsul, M. G., Bastawde, K. B., Varma, A. J., & Gokhale, D. V. (2007). Bioresource Technology, 98, 1467–1473.

    Article  CAS  Google Scholar 

  27. Joo, A., Jeya, M., Lee, K., Lee, K. M., Moon, H. J., Kim, Y. S., & Lee, J. K. (2010). Process Biochemistry, 45, 851–858.

    Article  CAS  Google Scholar 

  28. Bohlin, C., Praestgaard, E., Baumann, M. J., Booch, K., Praestgaard, J., Monrad, R. N., & Westh, P. (2013). Applied Microbiology and Biotechnology, 97, 159–169.

    Article  CAS  Google Scholar 

  29. Jatinder, K., Chadha, B. S., & Saini, H. S. (2006). World Journal of Microbiology and Biotechnology, 24, 599–604.

    Google Scholar 

  30. Jorgensen, H., Morkeberg, A., Krogh, K. B. R., & Olsson, L. (2005). Bioresource Technology, 36, 42–48.

    CAS  Google Scholar 

  31. Karnchanatat, A., Petsom, A., Sangvanich, P., Piaphukiew, J., Whalley, A. J. S., Reynolds, C. D., & Sihanonth, P. (2007). FEMS Microbiology Letters, 270, 162–170.

    Article  CAS  Google Scholar 

  32. Martins, L. F., Kolling, D., Camassola, M., Dhillon, A. J. P., & Ramos, L. P. (2008). Bioresource Technology, 99, 1417–1424.

    Article  CAS  Google Scholar 

  33. Marjamaa, K., Toth, K., Bromann, P. A., Szakacs, G., & Kruus, K. (2013). Enzyme and Microbial Technology, 52, 358–369.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from NAIP (ICAR) for carrying out this research project (NAIP/Comp-4/C-30030) “Novel biotechnological processes for production of high value products from rice straw and bagasse” is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Chadha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Chadha, B.S. Penicillium janthinellum: a Source of Efficient and High Levels of β-Glucosidase. Appl Biochem Biotechnol 175, 937–949 (2015). https://doi.org/10.1007/s12010-014-1330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1330-3

Keywords

Navigation