Skip to main content
Log in

A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

β-glucosidases (BGs) from Aspergillus fumigatus, Aspergillus niger, Aspergillus oryzae, Magnaporthe grisea, Neurospora crassa, and Penicillium brasilianum were purified to homogeneity, and investigated for their (simultaneous) hydrolytic and transglycosylation activity in samples with high concentrations of either cellobiose or glucose. The rate of the hydrolytic process (which converts one cellobiose to two glucose molecules) shows a maximum around 10–15 mM cellobiose and decreases with further increase in the concentration of substrate. At the highest investigated concentration (100 mM cellobiose), the hydrolytic activity for the different enzymes ranged from 10% to 55% of the maximum value. This decline in hydrolysis was essentially compensated by increased transglycosylation (which converts two cellobiose to one glucose and one trisaccharide). Hence, it was concluded that the hydrolytic slowdown at high substrate concentrations solely relies on an increased flow through the transglycosylation pathway and not an inhibition that delays the catalytic cycle. Transglycosylation was also detected at high product (glucose) concentrations, but in this case, it was not a major cause for the slowdown in hydrolysis. The experimental data was modeled to obtain kinetic parameters for both hydrolysis and transglycosylation. These parameters were subsequently used in calculations that quantified the negative effects on BG activity of respectively transglycosylation and product inhibition. The kinetic parameters and the mathematical method presented here allow estimation of these effects, and we suggest that this may be useful for the evaluation of BGs for industrial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baumann MJ, Murphy L, Lei N, Krogh KBRM, Borch K, Westh P (2011) Advantages of isothermal titration calorimetry for xylanase kinetics in comparison to chemical-reducing-end assays. Anal Biochem 410:19–26. doi:10.1016/j.ab.2010.11.001

    Article  CAS  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620. doi:10.1016/S0734-9750(97)00006-2

    Article  CAS  Google Scholar 

  • Bhat KM, Gaikwad JS, Maheshwari R (1993) Purification and characterization of an extracellular β-glucosidase from the thermophilic fungus Sporotrichum thermophile and its influence on cellulase activity. J Gen Microbiol 139:2825–2832

    Article  CAS  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407. doi:10.1080/07388550290789568

    Article  CAS  Google Scholar 

  • Bock K, Pedersen C, Pedersen H (1984) C-13 nuclear magnetic-resonance data for oligosaccharides. Adv Carbohydr Chem Biochem 42:193–225. doi:10.1016/s0065-2318(08)60125-0

    Article  CAS  Google Scholar 

  • Bohlin C, Olsen SN, Morant MD, Patkar S, Borch K, Westh P (2010) A comparative study of activity and apparent inhibition of fungal β-glucosidases. Biotechnol Bioeng. doi:10.1002/bit.22885

  • Briggner LE, Wadsö I (1991) Test and calibration processes for microcalorimeters, with special reference to heat-conduction instruments used with aqueous systems. J Biochem Biophys Methods 22:101–118. doi:10.1016/0165-022X(91)90023-P

    Article  CAS  Google Scholar 

  • Calsavara LPV, Moraes FFD, Zanin GM (1999) Modeling cellobiose hydrolysis with integrated kinetic models. Appl Biochem Biotechnol 77–79:789–806

    Article  Google Scholar 

  • Chauve M, Mathis H, Huc D, Casanave D, Monot F,Ferreira NL (2010) Comparative kinetic analysis of two fungal beta-glucosidases. Biotechnol Biofuels 3 doi:10.1186/1754-6834-3-3

  • Chirico WJ, Brown RD (1987) Purification and characterization of a β-glucosidase from Trichoderma reesei. Eur J Biochem 165:333–341. doi:10.1111/j.1432-1033.1987.tb11446.x

    Article  CAS  Google Scholar 

  • Christakopoulos P, Goodenough PW, Kekos D, Macris BJ, Claeyssens M, Bhat MK (1994) Purification and characterization of an extracellular β-glucosidase with transglycosylation and exo-glucosidase activities from Fusarium oxysporum. Eur J Biochem 224:379–385. doi:10.1111/j.1432-1033.1994.00379.x

    Article  CAS  Google Scholar 

  • Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland Press Ltd., London, UK

  • Crombie HJ, Chengappa S, Hellyer A, Reid JSG (1998) A xyloglucan oligosaccharide-active, transglycosylating beta-d-glucosidase from the cotyledons of nasturtium (Tropaeolum majus L) seedlings—purification, properties and characterization of a cDNA clone. Plant J 15:27–38. doi:10.1046/j.1365-313X.1998.00182.x

    Article  CAS  Google Scholar 

  • Decker CH, Visser J, Schreier P (2000) β-glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J Agric Food Chem 48:4929–4936. doi:10.1021/jf000434d

    Article  CAS  Google Scholar 

  • Decker CH, Visser J, Schreier P (2001) β-glucosidase multiplicity from Aspergillus tubingensis CBS 643.92: purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Appl Microbiol Biotechnol 55:157–163

    Article  CAS  Google Scholar 

  • Goldberg RN, Bell D, Tewari YB, McLaughlin MA (1991) Thermodynamics of hydrolysis of oligosaccharides. Biophys Chem 40:69–76. doi:10.1016/0301-4622(91)85030-T

    Article  CAS  Google Scholar 

  • Grous W, Converse A, Grethlein H, Lynd L (1985) Kinetics of cellobiose hydrolysis using cellobiase composites from Trichoderma reesei and Aspergillus niger. Biotechnol Bioeng 27:463–470. doi:10.1002/bit.260270411

    Article  CAS  Google Scholar 

  • Gueguen Y, Chemardin P, Arnaud A, Galzy P (1995) Purification and characterization of intracellular β-glucosidase from Botrytis cinerea. Enzyme Microb Technol 17:900–906. doi:10.1016/0141-0229(94)00143-F

    Article  CAS  Google Scholar 

  • Han YJ, Chen HZ (2008) Characterization of beta-glucosidase from corn stover and its application in simultaneous saccharification and fermentation. Bioresour Technol 99:6081–6087. doi:10.1016/j.biortech.2007.12.050

    Article  CAS  Google Scholar 

  • Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expr Purif 67:61–69. doi:10.1016/j.pep.2008.05.022

    Article  CAS  Google Scholar 

  • Hong J, Ladisch MR, Gong CS, Wankat PC, Tsao GT (1981) Combined product and substrate-inhibition equation for cellobiase. Biotechnol Bioeng 23:2779–2788. doi:10.1002/bit.260231212

    Article  CAS  Google Scholar 

  • Jeoh T, Baker JO, Ali MK, Himmel ME, Adney WS (2005) Beta-d-glucosidase reaction kinetics from isothermal titration microcalorimetry. Anal Biochem 347:244–253. doi:10.1016/j.ab.2005.09.031

    Article  CAS  Google Scholar 

  • Kawai R, Igarashi K, Kitaoka M, Ishii T, Samejima M (2004) Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1-->3)-[beta]-glucosidase from the white-rot fungus Phanerochaete chrysosporium. Carbohydr Res 339:2851–2857. doi:10.1016/j.carres.2004.09.019

    Article  CAS  Google Scholar 

  • Korotkova OG, Semenova MV, Morozova VV, Zorov IN, Sokolova LM, Bubnova TM, Okunev ON, Sinitsyn AP (2009) Isolation and properties of fungal β-glucosidases. Biochem Mosc 74:569–577. doi:10.1134/s0006297909050137

    Article  CAS  Google Scholar 

  • Krogh K, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Börjesson J, Olsson L (2009) Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl Microbiol Biotechnol 86:143–154. doi:10.1007/s00253-009-2181-7

    Article  Google Scholar 

  • Langston J, Sheehy N, Xu F (2006) Substrate specificity of Aspergillus oryzae family 3 β-glucosidase. Biochim Biophys Acta—Prot Proteom 1764:972–978. doi:10.1016/j.bbapap.2006.03.009

    Article  CAS  Google Scholar 

  • Lin J, Pillay B, Singh S (1999) Purification and biochemical characteristics of β-d-glucosidase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem 30:81–87

    CAS  Google Scholar 

  • Lymar ES, Li B, Renganathan V (1995) Purification and characterization of a cellulose-binding β-glucosidsase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 61:2976–2980

    CAS  Google Scholar 

  • Montero MA, Romeu A (1992) Kinetic study on the β-glucosidase-catalyzed reaction of Trichoderam viride cellulase. Appl Microbiol Biotechnol 38:350–353

    Article  CAS  Google Scholar 

  • Murray P, Aro N, Collins C, Grassick A, Penttilä M, Saloheimo M, Tuohy M (2004) Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Prot Expr Purif 38:248–257. doi:10.1016/j.pep.2004.08.006

    Article  CAS  Google Scholar 

  • Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeumen J, Bhat MK (2001) Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. Biochem J 353:117–127

    Article  CAS  Google Scholar 

  • Perezpons JA, Cayetano A, Rebordosa X, Lloberas J, Guasch A, Querol E (1994) A β-glucosidase gene (BGL3) from Streptomyces sp. strain-QM-B814—molecular cloning, nucleotide-sequence, purification and characterization of the encoded enzyme, a new member of family 1 glycosyl hydrolases. Eur J Biochem 223:557–565. doi:10.1111/j.1432-1033.1994.tb19025.x

    Article  CAS  Google Scholar 

  • Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64:3607–3614

    CAS  Google Scholar 

  • Saha BC, Bothast RJ (1996) Production, purification, and characterization of a highly glucose-tolerant novel β-glucosidase from Candida peltata. Appl Environ Microbiol 62:3165–3170

    CAS  Google Scholar 

  • Segel IH (1975) Enzyme kinetics: behavior and analysis og rapid equilibrium and steady-state enzyme systems. John Wiley & Sons Inc., New York

    Google Scholar 

  • Seidle HF, Huber RE (2005) Transglucosidic reactions of the Aspergillus niger Family 3 beta-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Arch Biochem Biophys 436:254–264. doi:10.1016/j.abb.2005.02.017

    Article  CAS  Google Scholar 

  • Seidle HF, Marten I, Shoseyov O, Huber RE (2004) Physical and kinetic properties of the family 3 β-glucosidase from Aspergillus niger which is important for cellulose breakdown. Protein J 23:11–23. doi:10.1023/B:JOPC.0000016254.58189.2a

    Article  CAS  Google Scholar 

  • Seidle HF, Allison SJ, George E, Huber RE (2006) Trp-49 of the family 3 beta-glucosidase from Aspergillus niger is important for its transglucosidic activity: creation of novel beta-glucosidases with low transglucosidic efficiencies. Arch Biochem Biophys 455:110–118. doi:10.1016/j.abb.2006.09.016

    Article  CAS  Google Scholar 

  • Takahash K, Hiromi K, Ono S (1965) Calorimetric studies on hydrolysis of glucosides. 3. Heats of hydrolysis of alpha-1,4 glucosidic linkages involved in higer glucosides. J Biochem (Tokyo) 58:255

    Google Scholar 

  • Tewari YB, Goldberg RN (1989) Thermodynamics of hydrolysis of disaccharides—cellobiose, gentiobiose, isomaltose, and maltose. J Biol Chem 264:3966–3971

    CAS  Google Scholar 

  • Tewari YB, Lang BE, Decker SR, Goldberg RN (2008) Thermodynamics of the hydrolysis reactions of 1,4-beta-d-xylobiose, 1,4-beta-d-xylotriose, d-cellobiose, and d-maltose. J Chem Thermodyn 40:1517–1526. doi:10.1016/j.jct.2008.05.015

    Article  CAS  Google Scholar 

  • Wallecha A, Mishra S (2003) Purification and characterization of two beta-glucosidases from a thermo-tolerant yeast Pichia etchellsii. BBA-Prot Proteom 1649:74–84. doi:10.1016/S1570-9639(03)00163-8

    Article  CAS  Google Scholar 

  • Yan TR, Lin CL (1997) Purification and characterization of a glucose-tolerant beta-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotechnol Biochem 61:965–970

    Article  CAS  Google Scholar 

  • Yan BX, Sun YQ (1997) Domain structure and conformation of a cellobiohydrolase from Trichoderma pseudokiningii S-38. J Protein Chem 16:59–66

    Article  CAS  Google Scholar 

  • Yeoh HH, Tan TK, Koh SK (1986) Kinetic properties of beta-glucosidase from Aspergillus ornatus. Appl Microbiol Biotechnol 25:25–28

    Article  CAS  Google Scholar 

  • Yoon JJ, Kim KY, Cha CJ (2008) Purification and characterization of thermostable beta-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J Microbiol 46:51–55. doi:10.1007/s12275-007-0230-4

    Article  CAS  Google Scholar 

  • Zhang YHP, Lynd LR (2003) Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal Biochem 322:225–232. doi:10.1016/j.ab.2003.07.021

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Torben Lund and Jacob Krake for the help with the HILIC-ESI-MS setup. This work was supported by funds from the Danish Agency for Science, Technology, and Innovation (Grant no. 2104-07-0028) and the Department of Energy (Award Number DE-FC36-08GO18080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Westh.

Electronic supplementary material

The online resource shows in detail how Eqs. 3 and 4 is derived and how SAS is used to obtain the maximum likelihood values of the kinetic parameters. It also shows how calculation of glucose, cellobiose, and triose as a function of time could be determined using a reaction scheme which includes hydrolysis and transglycosylation of cellobiose as well as hydrolysis of triose and product inhibition by glucose.

ESM 1

(DOC 588 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohlin, C., Praestgaard, E., Baumann, M.J. et al. A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Appl Microbiol Biotechnol 97, 159–169 (2013). https://doi.org/10.1007/s00253-012-3875-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3875-9

Keywords

Navigation