Skip to main content
Log in

Evaluation of Glycosyl Hydrolases in the Secretome of Aspergillus fumigatus and Saccharification of Alkali-Treated Rice Straw

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A thermotolerant Aspergillus fumigatus strain isolated from composting pile of mixed industrial waste was found to produce a spectrum of cellulase and hemicellulases when cultured on rice straw solidified substrate. The two-dimensional electrophoresis (2DE) resolved the secretome into 57 distinct protein spots. The zymograms developed against 2DE gels identified the presence of three β-glucosidases and five CBHI/EGI isoforms in the secretome. The peptide mass fingerprinting of 17 protein spots by liquid chromatography mass spectrometry characterized the secretome into different glycosyl hydrolase families. The enzyme cocktail produced by A. fumigatus was capable of efficient hydrolysis of alkali pretreated rice straw (at 7% and 10% w/v) resulting in 95% and 91% saccharification, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pérez, J., Muñoz-Dorado, J., de la Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 5, 53–63.

    Article  Google Scholar 

  2. Jorgensen, H., Kristensen, J. B., & Felby, C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioprod Biorefin, 1(2), 119–134.

    Article  Google Scholar 

  3. Sanchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol Adv, 27, 185–194.

    Article  CAS  Google Scholar 

  4. Gimbert, I. H., Margoet, A., Dolla, A., Jan, G., Molle, D., Lignon, S., et al. (2008). Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels, 1, 18. doi:10.1186/1754-6834-1-18.

    Article  Google Scholar 

  5. Kim, K. H., Brown, K. M., Harris, P. V., Langston, J. A., & Cherry, J. R. (2007). A proteomic strategy to discover β-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry. J Proteome Res, 6, 4749–4757.

    Article  CAS  Google Scholar 

  6. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: A review. Appl Microbiol Biotechnol, 56, 326–338.

    Article  CAS  Google Scholar 

  7. Shallom, D., & Shoham, Y. (2003). Microbial hemicellulases. Curr Opin Microbiol, 6, 219–228.

    Article  CAS  Google Scholar 

  8. Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., & Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol, 46, 541–549.

    Article  CAS  Google Scholar 

  9. Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2009). Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng, 107, 256–261.

    Article  CAS  Google Scholar 

  10. Cheng, Y., Song, X., Qin, Y., & Qu, Y. (2009). Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol, 107, 1837–1846.

    Article  CAS  Google Scholar 

  11. Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection stratergies. Biotechnol Adv, 24, 452–481.

    Article  CAS  Google Scholar 

  12. Henrissat, B., & Bairoch, A. (1996). Updating the sequence based classification of glycosyl hydrolases. Biochem J, 316, 695–696.

    Google Scholar 

  13. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The carbohydrate active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res, 37, 233–238.

    Article  Google Scholar 

  14. Oda, K., Kakizono, D., & Yamada, O. (2006). Proteomic analysis of extracellular protein from Aspergillus oryzae grown under submerged and solid state culture conditions. Appl Environ Microbiol, 72, 885–889.

    Article  Google Scholar 

  15. Abbas, A., Koc, H., Liu, F., & Tein, M. (2005). Fungal degradation of wood: Initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet, 47, 49–56.

    Article  CAS  Google Scholar 

  16. Bannerjee, G., Craig, J. S. S., & Walton, J. D. (2010). Improving enzymes for biomass conversion: A basic research perspective. Bioenergy Res, 3, 82–92.

    Article  Google Scholar 

  17. Soni, R., Chadha, B. S., & Saini, H. S. (2008). Novel sources of cellulases of thermophilic/thermotolerant fungi for efficient deinking of composite paper waste. Bioresources, 3, 234–246.

    Google Scholar 

  18. Soni, R., Nazir, A., & Chadha, B. S. (2010). Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka Floc and bagasse. Ind Crops Prod, 31, 277–283.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Kaur, J., Chadha, B. S., Badhan, A. K., & Saini, H. S. (2006). Purification and characterization of two endoglucanases from Melanocarpus sp. MTCC 3922. Bioresour Technol, 98, 74–81.

    Article  Google Scholar 

  21. Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities. Meth Enzymol, 160, 87–112.

    Article  CAS  Google Scholar 

  22. Parry, N. J., Beever, D. E., Owen, E., Vandenberghe, I., Van Beeumen, J., & Bhat, M. K. (2001). Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. J Biochem, 353, 117–127.

    CAS  Google Scholar 

  23. Ghatora, S. K., Chadha, B. S., Bhat, M. K., & Craig, F. (2006). Diversity of plant cell wall esterases in thermophilic and thermotolerant fungi. J Biotechnol, 125, 434–445.

    Article  CAS  Google Scholar 

  24. Bailey, M. J., & Tahtiharju, J. (2003). Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer controlled feeding strategy. Appl Microbiol Biotechnol, 62, 156–162.

    Article  CAS  Google Scholar 

  25. Juhasz, T., Szengyel, Z., Reczey, K., Siika-Aho, M., & Viikari, L. (2005). Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem, 40, 3519–3525.

    Article  CAS  Google Scholar 

  26. Fujii, T., Fang, X., Inoue, H., Murakami, K., & Sawayama, S. (2009). Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels, 2, 24. doi:10.1186/1754-6834-2-24.

    Article  Google Scholar 

  27. Kristensen, J. B., Felby, C., & Jorgensen, H. (2009). Yield determining factors in high solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels, 2, 11. doi:10.1186/1754-6834-2-11.

    Article  Google Scholar 

  28. Kaur, R., Chadha, B. S., Singh, S., & Saini, H. S. (2000). Amylase hyper producing haploid recombinant strains of Thermomyces lanuginosus obtained by intraspecific protoplast fusion. Can J Microbiol, 46, 669–673.

    Article  Google Scholar 

  29. Wang, C., Eufemi, M., Turano, C., & Giartosio, A. (1996). Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry, 35, 7299–7307.

    Article  CAS  Google Scholar 

  30. McHale, A. P., Hackett, T. J., & McHale, L. M. (1989). Specific zymogram staining procedure for the exocellobiohydrolase components produced by Talaromyces emersonii CBS 814.70. Enzyme Microb Technol, 11, 17–20.

    Article  CAS  Google Scholar 

  31. Vinzant, T. B., Adney, W. S., Decker, S. R., Baker, J. O., Kinter, M. T., Sherman, N. E., et al. (2001). Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation. Appl Biochem Biotechnol, 91–93, 99–107.

    Article  Google Scholar 

  32. Mahajan, S., & Master, E. R. (2010). Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose. Appl Microbiol Biotechnol, 86, 1903–1914.

    Article  CAS  Google Scholar 

  33. Carberry, S., & Doyle, S. (2007). Proteomic studies in biomedically and industrially relevant fungi. Cytotechnology, 53, 95–100.

    Article  CAS  Google Scholar 

  34. Mabey, J. E., Anderson, M. J., & Giles, P. F. (2004). CADRE: The central Aspergillus Data Repository. Nucleic Acids Res, 32, 401–405.

    Article  Google Scholar 

  35. Nierman, W. C., Pain, A., & Anderson, M. J. (2005). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 438, 1151–1156.

    Article  CAS  Google Scholar 

  36. Nagendran, S., Hallen-Adams, H. E., Paper, J. M., Aslam, N., & Walton, J. D. (2009). Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet Biol, 46, 427–435.

    Article  CAS  Google Scholar 

  37. Rudick, M. J., & Elbein, A. D. (1973). Glycoprotein enzymes secreted by Aspergillus fumigatus. Purification and properties of β-glucosidase. J Biol Chem, 248, 6509–6513.

    Google Scholar 

  38. Sandgren, M., Stahlberg, J., & Mitchinson, C. (2005). Structural and biochemical studies of GH family 12 cellulases: Improved thermal stability, and ligand complexes. Prog Biophys Mol Biol, 44, 5578–5584.

    Google Scholar 

  39. Nazir, A., Soni, R., Saini, H. S., Manhas, R. K., & Chadha, B. S. (2009). Purification and characterization of an endoglucanase from Aspergillus terreus highly active against barley β-glucan and xyloglucan. World J Microbiol Biotechnol, 25, 1189–1197.

    Article  CAS  Google Scholar 

  40. Anthony, T., Raj, K. C., Rajendran, A., & Gunasekaran, P. (2003). High molecular weight cellulase free xylanase from alkali tolerant Aspergillus fumigatus AR1. Enzyme Microb Technol, 32, 647–654.

    Article  CAS  Google Scholar 

  41. Jeya, M., Thaigarajan, S., Lee, J. K., & Gunasekaram, P. (2009). Cloning and expression of GH11 xylanase gene from Aspergillus fumigatus MKU1 in Pichia pastoris. J Biosci Bioeng, 108, 24–29.

    Article  CAS  Google Scholar 

  42. Hinz, S. W. A., Pouvreau, L., Joosten, R., Bartels, J., Jonathan, M. C., Wery, J., et al. (2009). Hemicellulase production in Chrysosporium lucknowense C1. J Cereal Sci, 50, 318–313.

    Article  CAS  Google Scholar 

  43. Wiegel, J., & Lorenz, W. W. (2000). Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the anaerobic thermophile Thermoanaerobacter etanolicus. Gene, 247, 137–143.

    Article  Google Scholar 

  44. Mast, S. W., & Moremen, K. W. (2006). Family 47 alpha-mannosidases in N-glycan processing. Meth Enzymol, 415, 31–46.

    Article  CAS  Google Scholar 

  45. Guais, O., Borderies, G., Pichereaux, C., Maestracci, M., Neugnot, V., Rossignol, M., et al. (2008). Proteomics analysis of “Rovabio™ Excel”, a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J Ind Microbiol Biotechnol, 35, 1659–1668.

    Article  CAS  Google Scholar 

  46. Sahai, A. S., & Manocha, M. S. (1993). Chitinases of fungi and plants: Their involvement in morphogenesis and host parasite interaction. FEMS Microbiol Rev, 11, 317–338.

    Article  CAS  Google Scholar 

  47. Malicev, E., Chowdhury, H. H., Macek, P., & Sepcic, K. (2007). Effect of ostreolysin, an Asp-hemolysin isoforms, on human chondrocytes and osteoblasts, and possible role of Asp-hemolysin in pathogenesis. Med Mycol, 45, 123–130.

    Article  CAS  Google Scholar 

  48. Taylor, L. E., II, Henrissat, B., Coutinho, P. M., Ekbora, N. A., Hutcheson, S. W., & Weiner, R. M. (2006). Complete cellulase system in marine bacterium Saccharophagus degradans strain 2–40T. J Bacteriol, 188, 3849–3861.

    Article  CAS  Google Scholar 

  49. Jeya, M., Zhang, Y. W., Kim, I. W., & Lee, J. K. (2009). Enhanced saccharification of alkali treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol, 100, 5155–5161.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support from NAIP (ICAR) for carrying out this research project (NAIP/Comp-4/C-30030) “Novel biotechnological processes for production of high value products from rice straw and bagasse” is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupinder Singh Chadha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M., Soni, R., Nazir, A. et al. Evaluation of Glycosyl Hydrolases in the Secretome of Aspergillus fumigatus and Saccharification of Alkali-Treated Rice Straw. Appl Biochem Biotechnol 163, 577–591 (2011). https://doi.org/10.1007/s12010-010-9064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9064-3

Keywords

Navigation